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ABSTRACT 

Despite the popularity of LALR(1) parser generators such as 

Yacc/Bison and LL parser generators such as ANTLR, robust and 

effective LR(1) parser generators are rare due to expensive 

performance and implementation difficulty. This work employed 

relevant algorithms, including the Knuth canonical algorithm, 

Pager’s practical general method, lane-tracing algorithm, unit 

production elimination algorithm and its extension, and the edge-

pushing algorithm, implemented an efficient, practical and 

Yacc/Bison-compatible open-source parser generator Hyacc, 

which supports full LR(0)/LALR(1)/LR(1) and partial LR(k). 

Based on the implementation, an empirical study was conducted 

comparing different LR(1) parser generation algorithms and 

LALR(1) algorithms. The result shows that LR(1) parser 

generation based upon improved algorithms and carefully selected 

data structures can be sufficiently efficient to be of practical use 

with modern computing facilities.   

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors – code generation, 

parsing, translator writing systems and compiler generators.  

General Terms 
Algorithms, Performance. 

Keywords 
LR(1), Parser Generator, Hyacc, Algorithm, Performance. 

 

1. INTRODUCTION 

1.1 Overview 
In 1965 Knuth proposed the canonical LR(k) algorithm [1], 

which is a very powerful parser generation algorithm for context-

free grammars. But it was criticized for being too expensive in 

time and space to be practical at that time. Despite some relevant 

research to reduce the cost of LR(k) algorithm, people soon get 

used to parser generators such as Yacc [2] and later Bison [3], 

which used the less powerful but more practical LALR(1) 

algorithm. LL parser generators such as ANTLR [4] started to 

gain popularity since 1990s. However robust and practical LR(1) 

parser generators keep scarce, not to say the more expensive case 

of LR(k). 

To address this issue, this work has developed Hyacc [5], an 

efficient, practical and Yacc/Bison-compatible open source full 

LR(0)/LALR(1)/LR(1) and partial LR(k) parser generation tool in 

ANSI C, based on the canonical algorithm of Knuth [1], the lane-

tracing algorithm of Pager [6][7], the practical general method of 

Pager [8], the unit production elimination algorithm of Pager [9] 

and its extension [10], and a new partial LR(k) algorithm called 

the edge-pushing algorithm [10]. 

Based on the implementation of Hyacc, we investigated 

details in the existing LR(1) algorithms, and compared the 

performance of LR(1) algorithms (Knuth’s canonical algorithm 

[1], Pager’s lane-tracing algorithm [6][7] and Pager’s practical 

general method [8]) as implemented in Hyacc with the LALR(1) 

algorithm as implemented in Bison with regard to the size of 

parsing machine, conflict resolution, as well as running time and 

space. The performance study was conducted on 13 programming 

languages, including Ada, ALGOL60, COBOL, Pascal, Delphi, C, 

C++, Java and more. 

1.2 Relevant Parser Generation Algorithms 
The three LR(1) algorithms used in Hyacc are actually all 

LR(k) algorithms. We only employed the case k = 1, because 

when k > 1 it is computationally expensive and also hard to 

implement. 1) The canonical algorithm of Knuth (1965) [1]. This 

algorithm is more powerful than LALR(1) and LL parser 

generation algorithms, and has less restrictions on the structure of 

the grammar. However it was criticized in the past for being 

practically infeasible, since its worse case computational 

complexity grows exponentially. 2) The lane-tracing algorithm of 

Pager (1977) [6][7]. This algorithm first generates a LR(0) 

parsing machine, then splits those states that cause conflicts. If the 

grammar is LR(1), such splitting would resolve all the conflicts. 

3) The practical general method of Pager (1977) [8]. In contrast to 

the lane-tracing algorithm, the practical general method solves the 

conflict problem by merging instead of splitting. It generates all 

the states in the full LR(1) parsing machine. But when it does so, 

it merges compatible states along the way. The merging used in 

Hyacc is based on the concept of weak compatibility.  

The LR(0) algorithm used in Hyacc is the traditional LR(0) 

algorithm. The LALR(1) algorithm used in Hyacc is based on the 
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first phase of the lane-tracing algorithm. Both are implemented 

because Pager’s lane-tracing algorithm depends on these as the 

first step. 

Unit productions are those with only one symbol on the right 

hand side of the production. Removal of unit productions from a 

grammar decreases the size of the parsing machine and increases 

parsing speed. Parsing machines generated by Pager’s unit 

production algorithm are found to contain duplicate states. 

Therefore an extension algorithm [10] is designed to remove the 

redundancy. Pager’s unit production elimination algorithm and 

the extension algorithm are both implemented into Hyacc. 

Finally, the edge-pushing LR(k) algorithm [10] is based on 

recursively applying the lane-tracing process to split further on the 

unresolved conflict states.  

Besides the algorithms used in Hyacc, we also briefly review 

a couple of relevant ones below. 

Korenjak’s Partitioning Algorithm in 1969 [13] is to 

partition a large grammar into small parts, check each part to see 

whether it is LR(1), generate Knuth canonical LR(1) parsing 

table, and combine these small tables into a large LR(1) parsing 

table for the original grammar. 

Spector first proposed his Splitting Algorithm in 1981 [11], 

based on splitting the inadequate states of an LR(0) parsing 

machine. In that sense it is similar to the lane-tracing algorithm of 

Pager. He further refined his algorithm in 1988 [12]. He did not 

have a formal proof of the validity of the algorithm, and only gave 

some examples to show how it worked.  

In addition, there is a general conception of how LR(1) can 

be achieved by starting from a LR(0) parsing machine and 

splitting those states that cause conflicts. This in concept is very 

similar to the lane-tracing algorithm of Pager and the splitting 

algorithm of Spector. 

1.3 The Need For Revisiting LR(1) Parser 

Generation 
First is the inadequacy of other parsing algorithms. These 

other parsing algorithms include SLR, LALR, LL and GLR. SLR 

is too restrictive in recognition power. GLR often uses LR(0) or 

LALR(1) in its engine. GLR [14] branches into multiple stacks for 

different parse options, eventually disregards the rest and only 

keeps one, which is very inefficient and is mostly used on natural 

languages due to its capability in handling ambiguity. LL does not 

allow left recursion on the input grammar, and tweaking the 

grammar is often needed. LALR has the “mysterious 

reduce/reduce conflict” problem and tweaking the grammar is also 

needed. Despite this, people consider the LALR(1) algorithm the 

best trade-off in efficiency and recognition power. Yacc and 

Bison are popular open source LALR(1) parser generators. 

Second is the obsolete misconception of LR(1) versus 

LALR(1). LR(1) can cover all the SLR, LALR and LL grammars, 

and is equivalent to LR(k) in the sense that every LR(k) grammar 

can be converted into a corresponding LR(1) grammar (at the cost 

of much more complicated structure and much bigger size) [15], 

so is the most general in recognition power. However, the belief 

of most people is that an LR(1) parser generation is too slow, 

takes too much memory, and the generated parsing table is too 

big, thus impractical performance-wise. 

The typical viewpoints on the comparison of LR(1) and 

LALR(1) algorithms are: i) Although a subset of LR(1), LALR(1) 

can cover most programming language grammars. ii) The size of 

the LALR(1) parsing machine is smaller than the LR(1) parsing 

machine. iii) Each shift/reduce conflict in a LALR(1) parsing 

machine also exists in the corresponding LR(1) parsing machine. 

iv) “mysterious” reduce/reduce conflicts exist in LALR(1) parsing 

machines but not in LR(1) parsing machines, and “presumably” 

this can be handled by rewriting the grammar. 

However, the LR(1) parser generation algorithm is superior 

in that the set of LR(1) grammars is a superset of LALR(1) 

grammars, and the LR(1) algorithm can resolve the “mysterious 

reduce/reduce conflicts” that cannot be resolved using LALR(1) 

algorithm. Compiler developers may spend days after days 

modifying the grammar in order to remove reduce/reduce conflicts 

without guaranteed success, and the modified grammar may not 

be the same language as initially desired. Besides, despite the 

general claim that LR(1) parsing machines are much bigger than 

LALR(1) parsing machines, the actual fact is that a LR(1) parsing 

machine can be of the same size as a LALR(1) parsing machine 

for LALR(1) grammars. Only for LR(1) grammars that are not 

LALR(1), LR(1) parsing machines are much bigger. Further, there 

exist algorithms that can reduce the running time and parsing 

table size, such as those by Pager [6][7][8] and Spector [11][12]. 

Third is the current status of LR(1) parser generators. There 

is a scarcity of good LR(1) parser generators, especially with 

reduced-space algorithms. Many people even have no idea of the 

existence of such algorithms. 

Considering all the advantages that LR(1) parser generation 

can provide, we feel it is beneficial to revisit the LR(1) parser 

generation problem, conduct a thorough investigation and provide 

a practical solution, so as to bring the power of LR(1) parser 

generation to life. 

2. THE HYACC PARSER GENERATOR 

2.1 Overview 
Hyacc is an efficient, practical and Yacc/Bison-compatible 

open source parser generator, written from scratch in ANSI C. It 

supports full LR(0)/LALR(1)/LR(1) and partial LR(k). Hyacc is 

pronounced as “HiYacc”, means Hawaii Yacc. Current features of 

Hyacc include: 

1) Implements the original Knuth canonical algorithm. 

2) Implements the practical general method based on weak 

compatibility. 

3) Implements the unit production elimination algorithm. 

4) Implements the extension to the unit production 

elimination algorithm. 

5) Implements the lane-tracing algorithm. 

6) Implements LALR(1) based on the lane-tracing algorithm 

phase 1. 

7) Implements the traditional LR(0) algorithm. 

8) Implements partial LR(k) with the edge-pushing 

algorithm, which now can  accept LR(k) grammars where lane-

tracing on increasing k do not involve cycles. 



9) Allows empty productions. 

10) Allows mid-production actions. 

11) Allows these directives: %token, %left, %right, %expect, 

%start, %prec. 

12) Is compatible to Yacc and Bison in input file format, 

ambiguous grammar handling and error handling. 

13) Works together with Lex. Or a customized yylex() 

function can be provided. 

14) If requested, can generate a graphviz input file for the 

parsing machine. 

15) If requested, the generated parser can record the parsing 

steps in a file, which makes it easy for debugging and testing. 

16) Is ANSI C compliant, thus easy to port to other 

platforms. 

17) Rich information in its debug output. 

What is left to be implemented is that Hyacc does not 

support these Yacc directives:  %nonassoc, %union, %type. 

Hyacc is released under the GPL license, but the LR(1) parse 

engine file hyaccpar and LR(k) parse engine file hyaccpark come 

under the BSD license. This guarantees that Hyacc itself is 

protected by GPL, but the parser generators created by Hyacc can 

be used in both open source and proprietary software. This 

addresses the problem that Richard Stallman discussed in 

“Conditions for Using Bison” of his Bison manual [16][17].  

Hyacc version 0.9 was released to the open source 

community in January 2008 [5]. Version 0.95 was released in 

April 2009. Version 0.97 was released in January 2011. 

2.2 Architecture Of The Hyacc Parser 

Generator 
Fig. 1 shows the steps on how the Hyacc parser generator 

works. 

 Hyacc first gets command line switch options, then reads 

from the grammar input file. Next, the step “Generate parsing 

machine” creates the parsing machine according to different 

algorithms as specified by the command line switches. Fig. 2 and 

Fig. 3 show the relationship of these algorithms. 

y.tab.c is the parser generator file with the parsing machine 

stored in arrays. 

y.output contains all kinds of information needed by the 

compiler developer to understand the parser generation process 

and the parsing machine. 

y.gviz can be used as the input file to the Graphviz software 

to generate a graph of the parsing machine. 

Fig. 2 shows the relationship of the algorithms used in Hyacc 

from the point of view of grammar processing. The input 

grammars can be processed by taking the left side merging path, 

first be processed by the Knuth LR(1) algorithm, then end here or 

be processed by the PGM LR(1) algorithm.  

On the merging side, the Knuth canonical LR(1) is the 

backbone algorithm. The PGM LR(1) algorithm adds the step to 

merge two states when they are “weakly compatible” to each 

other. 

On the splitting side, it always generates the LR(0) parsing 

machine first. It then can generate the LALR(1) parsing machine 

based on the first phase of the lane-tracing algorithm. It can go on 

with the second phase of lane-tracing to generate LR(1) parsing 

machine. There are two methods for the second phase of lane-

tracing. The first is based on the PGM method [3], the second is 

based on a lane table [18]. Then if specified, it can generate a 

LR(k) parsing machine for LR(k) grammars. 

The generated parsing machine may contain unit productions 

that can be eliminated. In this case, the UPE algorithm can be 

applied. The UPE Ext algorithm can be used to further remove 

redundant states after the UPE step. 

 

Figure 1. Overall architecture of the Hyacc parser generator 

 

 

Figure 2. Relationship of algorithms from the point of view of 

grammar processing 1 

                                                                 

1 Knuth LR(1) – Knuth canonical algorithm, PGM LR(1) – 

Pager’s practical general method, LT LALR(1) – LALR(1) 

based on lane-tracing phase 1, LT LR(1) w/ PGM – lane-tracing 

LR(1) algorithm based on Pager’s practical general method, LT 

LR(1) w/ LTT – lane-tracing LR(1) algorithm based on Pager’s 

lane table method, UPE – Pager’s unit production elimination 

algorithm, UPT Ext – Extension algorithm to Pager’s unit 

production elimination algorithm. 
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2.3 Performance 
The performance of Hyacc is compared to efficient LR(1) 

parser generators Menhir [19] and MSTA [20]. Menhir 

implements Pager’s Practical General Method in Caml. MSTA is 

an open source parser generator implemented in C++. 

Table 1 and Table 2 show a comparison of the generated 

parsing table on C++ and C grammars. MSTA and Hyacc generate 

the same number of states in canonical LR(1) parsing machine. 

However, the corresponding canonical LR(1) parsing machine 

generated by Menhir is significantly smaller. Obviously Menhir 

uses some other optimizations to compress its generated parsing 

table. MSTA also compresses its generated parsing machine, but 

not as much as Menhir. 

Table 3 and Table 4 show the running time comparison on 

C++ and C grammars. It is similar for all the three parser 

generators. There is no significant difference in the measurement. 

We conclude that Hyacc is a very efficient parser generator. 

Furthermore, it should be a favourable choice for compiler 

programmers with reduced-space LR(1) algorithms, which are not 

usually available in other LR(1) parser generators. MSTA does 

not use reduced-space LR(1) algorithms. For Menhir, the 

implementation language Caml is not so popular in industry. That 

said, Menhir and MSTA are both very efficient and useful parser 

generators in their domains. 

Table 1.  Parsing table size comparison of Menhir, MSTA and 

Hyacc on C++ grammar. 

 Knuth LR(1) PG MLR(1) LALR(1) 

Menhir 4325 1238 - 

MSTA 9724/8413 2 - 1237/1196 3 

Hyacc 9723 1384 1236 

 
Table 2.  Parsing table size comparison of Menhir, MSTA and 

Hyacc on C grammar. 

 Knuth LR(1) PG MLR(1) LALR(1) 

Menhir 1172 351 - 

MSTA 1575/1572 - 352/338 

Hyacc 1574 351 351 

 
Table 3.  Running time (sec) comparison of Menhir, MSTA 

and Hyacc on C++ grammar. 

 Knuth LR(1) PG MLR(1) LALR(1) 

Menhir 1.971 1.484 - 

MSTA 5.319 - 1.175 

Hyacc 3.529 1.779 1.101 

 
Table 4.  Running time (sec) comparison of Menhir, MSTA 

and Hyacc on C grammar. 

 Knuth LR(1) PG MLR(1) LALR(1) 

Menhir 1.640 0.557 - 

MSTA 0.918 - 0.130 

Hyacc 1.047 0.420 0.189 

                                                                 

2 For MSTA, a/b means this in output: a canonical LR-sets, b final  

states. 

3 For MSTA, a/b means this in output: a LALR-sets, b final states. 

3. MEASUREMENTS AND EVALUATIONS 

OF LR(1) ALGORITHMS 
Since Hyacc has implemented LR(0), LALR(1) and several 

LR(1) parser generation algorithms, it is natural to conduct a 

performance study on them. 

The data in this study are collected on a Dell Inspiron 600M 

computer, with 1.7GHz Intel Pentium processor and 1GB RAM. 

The operating system is Fedora core 4.0. The version of Bison is 

2.3. For all the measurements, time is in sec (second), memory is 

in MB (megabyte). All the algorithms are implemented in Hyacc, 

except for the Bison LALR(1) algorithm, which is implemented in 

Bison. 

The following algorithms are measured in this study. Their 

acronyms are introduced here and used in later discussion. There 

are three LR(1) algorithms, of these the latter two are reduced-

space: 1) Knuth LR(1): Knuth canonical algorithm, 2) PGM 

LR(1): LR(1) based on the practical general method (PGM), 3) 

LT LR(1) w/ PGM: LR(1) based on the practical general method, 

use PGM in phase 2. There are two LALR(1) algorithms: 1) LT 

LALR(1): LALR(1) based on lane-tracing phase 1, 2) Bison 

LALR(1): LALR(1) as implemented in Bison. Finally, a LR(0) 

algorithm: The traditional LR(0) algorithm. 

Table 5.  Number of terminals, non-terminals and rules in the 

grammars. 

 Grammar statistics 

Grammar Terminal # Non-Terminal # Rule # 
 

G1 3 3 5 

G2 3 7 10 

G3 3 7 10 

G4 4 3 5 

G5 5 3 6 

G6 5 4 8 

G7 10 8 16 

G8 4 6 10 

G9 5 3 6 

G10 4 4 7 

G11 3 5 6 

G12 8 10 17 

G13 2 5 7 

G14 13 10 18 

G15 14 15 24 

G16 21 19 36 

G17 7 10 19 
 

Ada 94 239 459 

Algol 60 55 77 169 

C 82 64 212 

Cobol 184 181 401 

C++ 5.0 101 186 665 

Delphi 95 169 358 

Ftp 52 16 74 

Grail 42 32 74 

Java 1.1 96 97 266 

Matlab 44 35 93 

Pascal 65 135 257 

Turbo Pascal 71 99 222 

Yacc 25 58 103 

 



17 simple grammars were used to test the correctness of 

Hyacc. The grammars of 13 real programming languages were 

used to check the performance of Hyacc. These real language 

grammars were obtained from [21] with minor modifications to fit 

in Yacc-style grammar input. Table 5 shows the statistics of these 

30 grammars. 

3.1 Parsing Table Size Comparison 
A comparison of parsing table sizes of the 30 grammars is 

shown in Table 6. Fig. 3 contains the 13 real language grammars 

only, and is the graphic version of the comparison that better 

visualizes the comparison. 

We can see that the size of Knuth canonical LR(1) parsing 

machine is much bigger than the rest. For the three reduced-space 

LR(1) algorithms, the generated parsing machines are only 

slightly bigger than LALR(1) parsing machines. LT LR(1) w/ 

PGM always produces the smallest parsing machine. For Bison, 

its state number is always one more than Hyacc. This is because 

Bison adds a $end symbol to the end of the goal production, so it 

always has one more accept state than Hyacc LALR(1) parsing 

machine. Considering this, LT LALR(1) gives the same number 

of states as Bison. This validates our implementation. 

We can conclude that for given grammars, reduced-space 

LR(1) algorithms bring down the parsing machine size 

significantly from the Knuth LR(1) parsing machine, and not 

much bigger than LALR(1) parsing machine. Actually, if the 

parsing machine contains no reduce/reduce error then the 

reduced-space LR(1) parsing machine has the same size as the 

LALR(1) parsing machine. LT LR(1) w/ PGM results in slightly 

more compact LR(1) parsing machine than PGM LR(1). This is 

possibly due to the use of weak compatibility in the PGM 

algorithm. Use of the strong compatibility can result in a most 

compact parsing machine [8]. 

3.2 Parsing Table Conflict Comparison 
A comparison of parsing table conflicts is shown in Table 7. 

LT LALR(1) and Bison LALR(1) produce the same number of 

shift/reduce and reduce/reduce conflicts for all the grammars 

(except for Delphi grammar). LT LR(1) w/ PGM and PGM LR(1) 

give the same number of conflicts as LALR(1) (except for Delphi 

grammar). Algol60 and C++ have reduce/reduce conflicts in 

LR(1) parsing machine, and therefore are not LR(1) grammars. 

The other grammars do not have reduce/reduce conflicts in 

LALR(1) parsing machine, so no such conflicts in LR(1) parsing 

machine too. G2 and G3 are LR(1) grammars, and their 

reduce/reduce conflicts in LALR(1) parsing machine are resolved 

in LR(1) parsing machine. The parsing machines of some 

programming language grammars (Algol60, C++, Delphi) contain 

reduce/reduce conflicts that cannot be resolved by LR(1) 

algorithms, and are not LR(1) grammars. 

3.3 Running Time Comparison 
Table 8 shows running time comparison of the 13 

programming language grammars. Fig. 4 is the graphic view. The 

Knuth LR(1) algorithm takes the longest time. As expected, 

reduced-space LR(1) algorithms are faster than Knuth LR(1), and 

close to Bison LALR(1), or even faster. And quite 

understandable, the LR(0) algorithm runs the fastest. 

We can conclude that even though more expensive than the 

rest here, Knuth LR(1) parser generation is still practical in 

running time, since it takes just a few seconds at most for the 

given grammars. 

3.4 Memory Usage Comparison 
Table 9 shows memory usage comparison of the 13 

programming language grammars. Fig. 5 is the graphic view. The 

Knuth LR(1) algorithm always uses more or much more memory 

than the rest.  Reduced-space LR(1) algorithms use much less 

memory than Knuth LR(1), and often not much more than 

LALR(1). Here although Knuth LR(1) parser generation requires 

much more memory than LT LR(1) and PGM LR(1), it is still 

acceptable for today’s personal computers, even for grammars as 

complex as that of C++ 5.0. 

3.5 Conclusion 
As expected, the Knuth canonical LR(1) algorithm is still 

quite expensive in both running time and space. The generated 

parsing machine is big. That said, for the given 13 programming 

language grammars, it is practical on today’s hardware. The most 

complex grammar of these, the grammar of C++ 5.0, contains 101 

terminals, 186 non-terminals and 665 rules. It costs less than 4 

seconds and about 120 MB memory to generate the parsing 

machine for it.  

Despite this, considering the theoretical implication and 

actual performance advantage of reduced-space LR(1) algorithms, 

we should always use reduced-space algorithms for faster running 

speed and less memory usage, as well as a smaller generated 

parsing machine. 

The practical general method and the lane-tracing algorithm 

are such reduced-space LR(1) algorithms. For the given 

programming language grammars, they both generate parsing 

machines with size close to those of LALR(1) parsing machines, 

and time and space requirements not much more expensive than 

LALR(1). For LALR(1) grammars, these reduced-space LR(1) 

algorithms generate the same parsing tables as those by LALR(1) 

algorithm. Only for LR(1) grammars it is more expensive. In this 

sense, we can adequately replace LALR(1) parser generators with 

LR(1) ones, with no worry in modifying existing projects, and less 

worry for projects to come.  

Comparing the two reduced-space LR(1) algorithms (PGM, 

LT LR(1) w/ PGM), LT LR(1) w/ PGM in general creates a 

smaller parsing machine. 

The current implementation of practical general method is 

based on the concept of weak compatibility. The strong 

compatibility may obtain more compression, but requires more 

computation and is harder to implement. It should be satisfying to 

use weak compatibility.  

The practical general method based on weak compatibility is 

also much easier to understand and implement than the lane-

tracing algorithm. From the point of view of a LR(1) parser 

generator author, there is no reason to go for lane-tracing instead 

of the practical general method. 

However, the advantage of the lane-tracing algorithm is that 

it is easier to extend to LR(k), since it only works on those 

configurations and states relevant to resolve reduce/reduce 

conflicts. The practical general method, however, has to handle 

the entire context tuples for all the configurations and states, and 

thus becomes more expensive for increasing k. 



Table 6.  Parsing table size comparison. 

 Hyacc Bison 

Grammar Knuth 

LR(1) 

PGM  

LR(1) 

LT LR(1)  

w/ PGM 

LR(0) LT  

LALR(1) 

LALR(1) 

 

G1 8 8 8 8 8 9 

G2 21 20 20 19 19 20 

G3 21 20 20 19 19 20 

G4 16 9 9 9 9 10 

G5 20 11 11 11 11 12 

G6 35 14 14 14 14 15 

G7 18 18 18 18 18 19 

G8 13 13 13 13 13 14 

G9 18 10 10 10 10 11 

G10 17 10 10 10 10 11 

G11 9 9 9 9 9 10 

G12 19 19 19 19 19 20 

G13 13 13 13 13 13 14 

G14 82 40 40 40 40 41 

G15 53 53 53 53 53 54 

G16 130 73 73 73 73 74 

G17 51 32 32 32 32 33 
 

Ada 12786 873 860 860 860 861 

Algol 60 1538 274 272 272 272 273 

C 1572 349 349 349 349 350 

Cobol 2398 657 657 657 657 658 

C++ 5.0 9785 1404 1261 1256 1256 1257 

Delphi 4215 609 609 609 609 610 

Ftp 210 200 200 200 200 201 

Grail 719 193 193 193 193 194 

Java 1.1 2479 439 428 428 428 429 

Matlab 588 174 174 174 174 175 

Pascal 2245 418 412 412 412 413 

Turbo Pascal 1918 394 386 386 386 387 

Yacc 153 128 128 128 128 129 
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Figure 3. Parsing Table Size Comparison 



Table 7.  Parsing table conflict comparison 

 Hyacc Bison 

Grammar Knuth 

LR(1) 

PGM 

LR(1) 

LT LR(1) 

w/ PGM 

LR(0) LT LALR(1) LALR(1) 

 s/r r/r s/r r/r s/r r/r s/r r/r s/r r/r s/r r/r 
 

G1 0 0 0 0 0 0 2 0 0 0 0 0 

G2 0 0 0 0 0 0 1 4 0 1 0 1 

G3 0 0 0 0 0 0 1 4 0 1 0 1 

G4 0 0 0 0 0 0 0 0 0 0 0 0 

G5 0 0 0 0 0 0 2 0 0 0 0 0 

G6 7 0 4 0 4 0 12 0 4 0 4 0 

G7 0 0 0 0 0 0 8 0 0 0 0 0 

G8 0 0 0 0 0 0 2 0 0 0 0 0 

G9 0 0 0 0 0 0 0 0 0 0 0 0 

G10 0 0 0 0 0 0 3 0 0 0 0 0 

G11 0 0 0 0 0 0 0 4 0 0 0 0 

G12 0 0 0 0 0 0 3 27 0 0 0 0 

G13 0 0 0 0 0 0 1 0 0 0 0 0 

G14 0 0 0 0 0 0 5 0 0 0 0 0 

G15 0 0 0 0 0 0 1 0 0 0 0 0 

G16 0 0 0 0 0 0 6 0 0 0 0 0 

G17 0 0 0 0 0 0 4 0 0 0 0 0 
 

Ada 0 0 0 0 0 0 260 2526 0 0 0 0 

Algol 60 0 4 0 1 0 1 133 336 0 1 0 1 

C 2 0 1 0 1 0 214 0 1 0 1 0 

Cobol 6 0 5 0 5 0 349 1480 5 0 5 0 

C++ 5.0 280 31 24 18 24 18 7140 10812 24 18 24 18 

Delphi 316 1191 60 174 58 139 578 1344 15 121 60 174 

Ftp 0 0 0 0 0 0 6 0 0 0 0 0 

Grail 0 0 0 0 0 0 117 0 0 0 0 0 

Java 1.1 2 0 1 0 1 0 236 582 1 0 1 0 

Matlab 25 0 14 0 14 0 142 45 14 0 14 0 

Pascal 0 0 0 0 0 0 222 264 0 0 0 0 

Turbo Pascal 25 0 1 0 1 0 263 288 1 0 1 0 

Yacc 8 0 8 0 8 0 60 0 8 0 8 0 

 

Table 8.  Time performance comparison (second) 

 Hyacc Bison 

Grammar Knuth 

LR(1) 

PGM 

LR(1) 

LT LR(1) 

w/ PGM 

LR(0) LT 

LALR(1) 

LALR(1) 

Ada 1.883 0.406 0.172 0.136 0.173 0.155 

Algol 60 0.606 0.290 0.509 0.039 0.499 0.174 

C 1.047 0.420 0.192 0.067 0.189 0.225 

Cobol 0.234 0.127 0.115 0.117 0.113 1.690 

C++ 5.0 3.529 1.779 1.261 0.544 1.101 0.705 

Delphi 1.141 0.335 0.364 0.093 0.137 0.638 

Ftp 0.016 0.017 0.017 0.016 0.017 0.268 

Grail 0.051 0.024 0.020 0.017 0.021 0.156 

Java 1.1 1.552 1.026 0.350 0.097 0.350 0.339 

Matlab 0.351 0.189 0.117 0.034 0.116 0.120 

Pascal 0.504 0.174 0.066 0.050 0.066 0.246 

Turbo Pascal 0.305 0.098 0.053 0.042 0.054 0.204 

Yacc 0.018 0.026 0.016 0.015 0.017 0.157 
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Table 9.  Memory usage comparison (MB) 

 Hyacc Bison 

Grammar Knuth LR(1) PGM 

LR(1) 

LT LR(1) 

w/ PGM 

LR(0) LT 

LALR(1) 

LALR(1) 

Ada 95.1 7.9 7.9 6.9 7.9 4.0 

Algol 60 16.0 4.2 6.4 3.6 5.1 3.9 

C 18.9 6.0 5.2 4.3 5.2 4.0 

Cobol 19.1 6.3 6.5 6.0 6.5 4.0 

C++ 5.0 122.7 23.9 39.1 12.5 19.9 4.3 

Delphi 37.4 6.5 14.5 5.5 6.4 3.9 

Ftp 2.8 2.8 2.8 2.7 2.8 3.9 

Grail 5.3 2.9 2.9 2.8 3.0 3.8 

Java 1.1 35.6 7.8 6.3 5.0 6.3 3.8 

Matlab 7.8 3.9 3.5 3.0 3.5 3.8 

Pascal 18.6 4.9 4.8 4.4 4.8 3.9 

Turbo Pascal 13.8 4.3 4.5 4.2 4.5 3.9 

Yacc 2.6 2.6 2.6 2.5 2.6 3.9 
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Figure 5. Memory Usage Comparison 

Figure 4. Running Time Comparison 



4. RELATED WORK 

4.1 LR(1) Parser Generators Based on the 

Practical General Method 
We introduce six LR(1) parser generators that implement 

Pager’s practical general method. These six parser generators are: 

LR, LRSYS, LALR, GDT_PC, Menhir and the Python Parsing 

module. 

The LR program in ANSI standard Fortran 66 was developed 

in 1979 at the Lawrence Livermore National Laboratory [22]. It 

was ported to more than nine platforms, and was used to develop 

compilers and system utilities. However, it is rarely used today, 

and not known to most people. One reason may be because that it 

was implemented in a language specifically for science 

computation, and not in a general-purpose language. Its rigid and 

weird input format also limited its popularity. In addition, the use 

of LR is not open to the public and not free. 

LRSYS was developed in the Pascal language around 1985, 

also at the Lawrence Livermore National Laboratory [23]. It was 

based on the LR parser generator. There were versions for 

CRAY1, DEC VAX 11 and IBM PC. Parser engines in Pascal, 

FORTRAN 77, and C were provided. The CRAY1 and DEC 

VAX11 versions also contain engines for LRLTRAN and 

CFTFORTRAN 77.  

It is reported [24] that Pager’s practical general method was 

also used in a parser generator named LALR in 1988, 

implemented in the language MACRO-11 on a RSX-11 machine. 

It is stated that Pager’s algorithm was also used in GDT_PC 

(Grammar Debugging Tool and Parser Constructor) in about 

1988.  

The Menhir program in Objective Caml was developed 

around 2004 in France [19], and the source code is actively 

maintained. It implemented Pager’s algorithm with slight 

modifications. It has since been widely used in the Caml language 

community, quickly replacing the previous Caml parser generator 

ocamlyacc.  

The Python Parsing module was developed at the beginning 

of 2007 [25]. Its author felt that an LALR(1) parser generator 

could not meet his needs in developing a grammar in his work. A 

wide literature survey led him to Pager’s PGM algorithm. This 

parser generator also implemented the CFSM (Characteristic 

Finite State Machine) and GLR drivers to handle non-

deterministic and ambiguous grammars. It was released as open 

source software in March 2007. The author estimated the Python 

implementation to be about 100 times slower than a C 

counterpart, which is kind of close to the measurement here. 

4.2 LR(1) Parser Generators Based on the 

Lane-Tracing Algorithm 
The lane-tracing algorithm was implemented by Pager in the 

1970s [6][7] However the implementation was done in Assembly 

for OS 360, and thus not portable to other platforms. We did not 

find other available lane-tracing algorithm implementations. 

4.3 LR(1) Parser Generators Based on 

Spector’s Splitting Algorithm 
Spector created a splitting LR(1) algorithm in the 1980s, 

which in concept is similar to Pager’s lane-tracing algorithm. He 

implemented the algorithm in an experimental, incomplete parser 

generator as described in his 1988 paper [12]. Later, in 1994 the 

Muskox parser generator [26] implemented a version of Spector’s 

algorithm. The author Boris Burshteyn said that the 1988 paper of 

Spector was short of implementation details, so he implemented 

the algorithm in a modified way according to his understanding. 

4.4 Other LR(1) Parser Generators 
More efforts were done along this line. But most of these 

other approaches are not formally available in literature, are 

implemented in proprietary products and details unknown, or 

sometimes are not fully working. 

Yacc++ [27][28] is a commercial product. It started as a 

LALR(k) parser generator in 1986, then added LR(1) around 

1990 using a splitting approach that loosely based on Spector’s 

algorithm. 

Dr. Parse [29] is another commercial product that claimed to 

use LALR(1)/LR(1). Its implementation details are unknown. 

MSTA [30] is a part of the open source COCOM toolset, and 

is believed to take the splitting approach. It claims 

LR(k)/LALR(k), but does not use reduced-space algorithms such 

as those by Pager and Spector. 

In addition, most recently the IELR(1) algorithm [31][32] 

was proposed to provide LR(1) solution to non-LR(1) grammars 

with specifications to solve conflicts. The authors implemented 

this as an extension of Bison. 

5. CONCLUSIONS 
LR(1) is a powerful parser generation algorithm for context-

free grammars. However LR(1) parser generation were long 

regarded as computationally infeasible. The community has seen 

various parser generators using LALR(1) and LL algorithms, but 

LR(1) parser generators are still rare. There are however LR(1) 

algorithms that can reduce the number of states in a parsing 

machine, making LR(1) parser generation practical.  

In this work we investigated LR(1) parser generation 

algorithms and implemented a parser generator Hyacc, which 

supports LR(0)/LALR(1)/LR(1) and partial LR(k). These three 

LR(1) algorithms are used: 1) the Knuth canonical algorithm, 2) 

Pager’s practical general method, 3) Pager’s lane-tracing 

algorithm. Hyacc implemented the traditional LR(0) algorithm, 

and implemented LALR(1) based on the first phase of the lane-

tracing algorithm. The partial LR(k) algorithm used is called the 

edge-pushing algorithm. Hyacc also implemented Pager’s unit 

production elimination algorithm and an extension of it. 

Hyacc has been released to the open source community. The 

usage of Hyacc is highly similar to the widely used LALR(1) 

parser generators Yacc and Bison, which makes it easy to learn 

and to be used. Hyacc is written in ANSI C and can be easily 

ported to different platforms. In summary, Hyacc is unique in its 

wide span of algorithm coverage, efficiency, portability, usability 

and availability.  



We further conducted a performance study of different LR(1) 

algorithms as implemented in Hyacc with each other, and with 

LALR(1) algorithm as implemented in Bison. The study was done 

on the grammars of 13 programming languages. We have shown 

that with reduced-space LR(1) algorithms such as the practical 

general method and the lane-tracing algorithm, the time and space 

requirements are not much bigger than the LALR(1) algorithm for 

these programming languages grammars. It is safe to conclude 

that we can take reduced-space LR(1) as an efficient alternative of 

its LALR(1) peers. 

6. FUTURE WORK 
The Yacc directives %union, %type and %nonassoc are not 

implemented in Hyacc yet. It is also useful to provide the parse 

engine in programming languages other than C to support more 

developers, such as in C++ and Java. 
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