
Full LR(1) Parser Generator Hyacc

And Study On The Performance of LR(1) Algorithms
Xin Chen

Department of Information and Computer Science
University of Hawaii at Manoa

POST Building 317, 1680 East-West Road
Honolulu, HI 96822

(808) 226-3584

chenx@hawaii.edu

David Pager
Department of Information and Computer Science

University of Hawaii at Manoa
POST Building 317, 1680 East-West Road

Honolulu, HI 96822
(808) 292-5629

pagerd001@hawaii.rr.com

ABSTRACT

Despite the popularity of LALR(1) parser generators such as

Yacc/Bison and LL parser generators such as ANTLR, robust and

effective LR(1) parser generators are rare due to expensive

performance and implementation difficulty. This work employed

relevant algorithms, including the Knuth canonical algorithm,

Pager’s practical general method, lane-tracing algorithm, unit

production elimination algorithm and its extension, and the edge-

pushing algorithm, implemented an efficient, practical and

Yacc/Bison-compatible open-source parser generator Hyacc,

which supports full LR(0)/LALR(1)/LR(1) and partial LR(k).

Based on the implementation, an empirical study was conducted

comparing different LR(1) parser generation algorithms and

LALR(1) algorithms. The result shows that LR(1) parser

generation based upon improved algorithms and carefully selected

data structures can be sufficiently efficient to be of practical use

with modern computing facilities.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – code generation,

parsing, translator writing systems and compiler generators.

General Terms
Algorithms, Performance.

Keywords
LR(1), Parser Generator, Hyacc, Algorithm, Performance.

1. INTRODUCTION

1.1 Overview
In 1965 Knuth proposed the canonical LR(k) algorithm [1],

which is a very powerful parser generation algorithm for context-

free grammars. But it was criticized for being too expensive in

time and space to be practical at that time. Despite some relevant

research to reduce the cost of LR(k) algorithm, people soon get

used to parser generators such as Yacc [2] and later Bison [3],

which used the less powerful but more practical LALR(1)

algorithm. LL parser generators such as ANTLR [4] started to

gain popularity since 1990s. However robust and practical LR(1)

parser generators keep scarce, not to say the more expensive case

of LR(k).

To address this issue, this work has developed Hyacc [5], an

efficient, practical and Yacc/Bison-compatible open source full

LR(0)/LALR(1)/LR(1) and partial LR(k) parser generation tool in

ANSI C, based on the canonical algorithm of Knuth [1], the lane-

tracing algorithm of Pager [6][7], the practical general method of

Pager [8], the unit production elimination algorithm of Pager [9]

and its extension [10], and a new partial LR(k) algorithm called

the edge-pushing algorithm [10].

Based on the implementation of Hyacc, we investigated

details in the existing LR(1) algorithms, and compared the

performance of LR(1) algorithms (Knuth’s canonical algorithm

[1], Pager’s lane-tracing algorithm [6][7] and Pager’s practical

general method [8]) as implemented in Hyacc with the LALR(1)

algorithm as implemented in Bison with regard to the size of

parsing machine, conflict resolution, as well as running time and

space. The performance study was conducted on 13 programming

languages, including Ada, ALGOL60, COBOL, Pascal, Delphi, C,

C++, Java and more.

1.2 Relevant Parser Generation Algorithms
The three LR(1) algorithms used in Hyacc are actually all

LR(k) algorithms. We only employed the case k = 1, because

when k > 1 it is computationally expensive and also hard to

implement. 1) The canonical algorithm of Knuth (1965) [1]. This

algorithm is more powerful than LALR(1) and LL parser

generation algorithms, and has less restrictions on the structure of

the grammar. However it was criticized in the past for being

practically infeasible, since its worse case computational

complexity grows exponentially. 2) The lane-tracing algorithm of

Pager (1977) [6][7]. This algorithm first generates a LR(0)

parsing machine, then splits those states that cause conflicts. If the

grammar is LR(1), such splitting would resolve all the conflicts.

3) The practical general method of Pager (1977) [8]. In contrast to

the lane-tracing algorithm, the practical general method solves the

conflict problem by merging instead of splitting. It generates all

the states in the full LR(1) parsing machine. But when it does so,

it merges compatible states along the way. The merging used in

Hyacc is based on the concept of weak compatibility.

The LR(0) algorithm used in Hyacc is the traditional LR(0)

algorithm. The LALR(1) algorithm used in Hyacc is based on the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

C3S2E-11 2011, May 16–18, 2011, Montreal [QC, CANADA]

Editors: Abran, Desai, Mudur

Copyright ©2011 ACM 978-1-4503-0626-3/11/05 $10.00

first phase of the lane-tracing algorithm. Both are implemented

because Pager’s lane-tracing algorithm depends on these as the

first step.

Unit productions are those with only one symbol on the right

hand side of the production. Removal of unit productions from a

grammar decreases the size of the parsing machine and increases

parsing speed. Parsing machines generated by Pager’s unit

production algorithm are found to contain duplicate states.

Therefore an extension algorithm [10] is designed to remove the

redundancy. Pager’s unit production elimination algorithm and

the extension algorithm are both implemented into Hyacc.

Finally, the edge-pushing LR(k) algorithm [10] is based on

recursively applying the lane-tracing process to split further on the

unresolved conflict states.

Besides the algorithms used in Hyacc, we also briefly review

a couple of relevant ones below.

Korenjak’s Partitioning Algorithm in 1969 [13] is to

partition a large grammar into small parts, check each part to see

whether it is LR(1), generate Knuth canonical LR(1) parsing

table, and combine these small tables into a large LR(1) parsing

table for the original grammar.

Spector first proposed his Splitting Algorithm in 1981 [11],

based on splitting the inadequate states of an LR(0) parsing

machine. In that sense it is similar to the lane-tracing algorithm of

Pager. He further refined his algorithm in 1988 [12]. He did not

have a formal proof of the validity of the algorithm, and only gave

some examples to show how it worked.

In addition, there is a general conception of how LR(1) can

be achieved by starting from a LR(0) parsing machine and

splitting those states that cause conflicts. This in concept is very

similar to the lane-tracing algorithm of Pager and the splitting

algorithm of Spector.

1.3 The Need For Revisiting LR(1) Parser

Generation
First is the inadequacy of other parsing algorithms. These

other parsing algorithms include SLR, LALR, LL and GLR. SLR

is too restrictive in recognition power. GLR often uses LR(0) or

LALR(1) in its engine. GLR [14] branches into multiple stacks for

different parse options, eventually disregards the rest and only

keeps one, which is very inefficient and is mostly used on natural

languages due to its capability in handling ambiguity. LL does not

allow left recursion on the input grammar, and tweaking the

grammar is often needed. LALR has the “mysterious

reduce/reduce conflict” problem and tweaking the grammar is also

needed. Despite this, people consider the LALR(1) algorithm the

best trade-off in efficiency and recognition power. Yacc and

Bison are popular open source LALR(1) parser generators.

Second is the obsolete misconception of LR(1) versus

LALR(1). LR(1) can cover all the SLR, LALR and LL grammars,

and is equivalent to LR(k) in the sense that every LR(k) grammar

can be converted into a corresponding LR(1) grammar (at the cost

of much more complicated structure and much bigger size) [15],

so is the most general in recognition power. However, the belief

of most people is that an LR(1) parser generation is too slow,

takes too much memory, and the generated parsing table is too

big, thus impractical performance-wise.

The typical viewpoints on the comparison of LR(1) and

LALR(1) algorithms are: i) Although a subset of LR(1), LALR(1)

can cover most programming language grammars. ii) The size of

the LALR(1) parsing machine is smaller than the LR(1) parsing

machine. iii) Each shift/reduce conflict in a LALR(1) parsing

machine also exists in the corresponding LR(1) parsing machine.

iv) “mysterious” reduce/reduce conflicts exist in LALR(1) parsing

machines but not in LR(1) parsing machines, and “presumably”

this can be handled by rewriting the grammar.

However, the LR(1) parser generation algorithm is superior

in that the set of LR(1) grammars is a superset of LALR(1)

grammars, and the LR(1) algorithm can resolve the “mysterious

reduce/reduce conflicts” that cannot be resolved using LALR(1)

algorithm. Compiler developers may spend days after days

modifying the grammar in order to remove reduce/reduce conflicts

without guaranteed success, and the modified grammar may not

be the same language as initially desired. Besides, despite the

general claim that LR(1) parsing machines are much bigger than

LALR(1) parsing machines, the actual fact is that a LR(1) parsing

machine can be of the same size as a LALR(1) parsing machine

for LALR(1) grammars. Only for LR(1) grammars that are not

LALR(1), LR(1) parsing machines are much bigger. Further, there

exist algorithms that can reduce the running time and parsing

table size, such as those by Pager [6][7][8] and Spector [11][12].

Third is the current status of LR(1) parser generators. There

is a scarcity of good LR(1) parser generators, especially with

reduced-space algorithms. Many people even have no idea of the

existence of such algorithms.

Considering all the advantages that LR(1) parser generation

can provide, we feel it is beneficial to revisit the LR(1) parser

generation problem, conduct a thorough investigation and provide

a practical solution, so as to bring the power of LR(1) parser

generation to life.

2. THE HYACC PARSER GENERATOR

2.1 Overview
Hyacc is an efficient, practical and Yacc/Bison-compatible

open source parser generator, written from scratch in ANSI C. It

supports full LR(0)/LALR(1)/LR(1) and partial LR(k). Hyacc is

pronounced as “HiYacc”, means Hawaii Yacc. Current features of

Hyacc include:

1) Implements the original Knuth canonical algorithm.

2) Implements the practical general method based on weak

compatibility.

3) Implements the unit production elimination algorithm.

4) Implements the extension to the unit production

elimination algorithm.

5) Implements the lane-tracing algorithm.

6) Implements LALR(1) based on the lane-tracing algorithm

phase 1.

7) Implements the traditional LR(0) algorithm.

8) Implements partial LR(k) with the edge-pushing

algorithm, which now can accept LR(k) grammars where lane-

tracing on increasing k do not involve cycles.

9) Allows empty productions.

10) Allows mid-production actions.

11) Allows these directives: %token, %left, %right, %expect,

%start, %prec.

12) Is compatible to Yacc and Bison in input file format,

ambiguous grammar handling and error handling.

13) Works together with Lex. Or a customized yylex()

function can be provided.

14) If requested, can generate a graphviz input file for the

parsing machine.

15) If requested, the generated parser can record the parsing

steps in a file, which makes it easy for debugging and testing.

16) Is ANSI C compliant, thus easy to port to other

platforms.

17) Rich information in its debug output.

What is left to be implemented is that Hyacc does not

support these Yacc directives: %nonassoc, %union, %type.

Hyacc is released under the GPL license, but the LR(1) parse

engine file hyaccpar and LR(k) parse engine file hyaccpark come

under the BSD license. This guarantees that Hyacc itself is

protected by GPL, but the parser generators created by Hyacc can

be used in both open source and proprietary software. This

addresses the problem that Richard Stallman discussed in

“Conditions for Using Bison” of his Bison manual [16][17].

Hyacc version 0.9 was released to the open source

community in January 2008 [5]. Version 0.95 was released in

April 2009. Version 0.97 was released in January 2011.

2.2 Architecture Of The Hyacc Parser

Generator
Fig. 1 shows the steps on how the Hyacc parser generator

works.

 Hyacc first gets command line switch options, then reads

from the grammar input file. Next, the step “Generate parsing

machine” creates the parsing machine according to different

algorithms as specified by the command line switches. Fig. 2 and

Fig. 3 show the relationship of these algorithms.

y.tab.c is the parser generator file with the parsing machine

stored in arrays.

y.output contains all kinds of information needed by the

compiler developer to understand the parser generation process

and the parsing machine.

y.gviz can be used as the input file to the Graphviz software

to generate a graph of the parsing machine.

Fig. 2 shows the relationship of the algorithms used in Hyacc

from the point of view of grammar processing. The input

grammars can be processed by taking the left side merging path,

first be processed by the Knuth LR(1) algorithm, then end here or

be processed by the PGM LR(1) algorithm.

On the merging side, the Knuth canonical LR(1) is the

backbone algorithm. The PGM LR(1) algorithm adds the step to

merge two states when they are “weakly compatible” to each

other.

On the splitting side, it always generates the LR(0) parsing

machine first. It then can generate the LALR(1) parsing machine

based on the first phase of the lane-tracing algorithm. It can go on

with the second phase of lane-tracing to generate LR(1) parsing

machine. There are two methods for the second phase of lane-

tracing. The first is based on the PGM method [3], the second is

based on a lane table [18]. Then if specified, it can generate a

LR(k) parsing machine for LR(k) grammars.

The generated parsing machine may contain unit productions

that can be eliminated. In this case, the UPE algorithm can be

applied. The UPE Ext algorithm can be used to further remove

redundant states after the UPE step.

Figure 1. Overall architecture of the Hyacc parser generator

Figure 2. Relationship of algorithms from the point of view of

grammar processing 1

1 Knuth LR(1) – Knuth canonical algorithm, PGM LR(1) –

Pager’s practical general method, LT LALR(1) – LALR(1)

based on lane-tracing phase 1, LT LR(1) w/ PGM – lane-tracing

LR(1) algorithm based on Pager’s practical general method, LT

LR(1) w/ LTT – lane-tracing LR(1) algorithm based on Pager’s

lane table method, UPE – Pager’s unit production elimination

algorithm, UPT Ext – Extension algorithm to Pager’s unit

production elimination algorithm.

 LR(0) Knuth LR(1)

PGM

LR(1)

LT LALR(1)

LT LR(1)

w/ LTT

G
ram

m
ar P

ro
cessin

g

LT LR(1)

w/ PGM

 LR(k)

UPE
UPE Ext

Get command switch options

Get grammar from input file

Generate parsing machine

Generate compiler file y.tab.c

Generate y.output if requested

Generate y.gviz if requested

2.3 Performance
The performance of Hyacc is compared to efficient LR(1)

parser generators Menhir [19] and MSTA [20]. Menhir

implements Pager’s Practical General Method in Caml. MSTA is

an open source parser generator implemented in C++.

Table 1 and Table 2 show a comparison of the generated

parsing table on C++ and C grammars. MSTA and Hyacc generate

the same number of states in canonical LR(1) parsing machine.

However, the corresponding canonical LR(1) parsing machine

generated by Menhir is significantly smaller. Obviously Menhir

uses some other optimizations to compress its generated parsing

table. MSTA also compresses its generated parsing machine, but

not as much as Menhir.

Table 3 and Table 4 show the running time comparison on

C++ and C grammars. It is similar for all the three parser

generators. There is no significant difference in the measurement.

We conclude that Hyacc is a very efficient parser generator.

Furthermore, it should be a favourable choice for compiler

programmers with reduced-space LR(1) algorithms, which are not

usually available in other LR(1) parser generators. MSTA does

not use reduced-space LR(1) algorithms. For Menhir, the

implementation language Caml is not so popular in industry. That

said, Menhir and MSTA are both very efficient and useful parser

generators in their domains.

Table 1. Parsing table size comparison of Menhir, MSTA and

Hyacc on C++ grammar.

 Knuth LR(1) PG MLR(1) LALR(1)

Menhir 4325 1238 -

MSTA 9724/8413 2 - 1237/1196 3

Hyacc 9723 1384 1236

Table 2. Parsing table size comparison of Menhir, MSTA and

Hyacc on C grammar.

 Knuth LR(1) PG MLR(1) LALR(1)

Menhir 1172 351 -

MSTA 1575/1572 - 352/338

Hyacc 1574 351 351

Table 3. Running time (sec) comparison of Menhir, MSTA

and Hyacc on C++ grammar.

 Knuth LR(1) PG MLR(1) LALR(1)

Menhir 1.971 1.484 -

MSTA 5.319 - 1.175

Hyacc 3.529 1.779 1.101

Table 4. Running time (sec) comparison of Menhir, MSTA

and Hyacc on C grammar.

 Knuth LR(1) PG MLR(1) LALR(1)

Menhir 1.640 0.557 -

MSTA 0.918 - 0.130

Hyacc 1.047 0.420 0.189

2 For MSTA, a/b means this in output: a canonical LR-sets, b final

states.

3 For MSTA, a/b means this in output: a LALR-sets, b final states.

3. MEASUREMENTS AND EVALUATIONS

OF LR(1) ALGORITHMS
Since Hyacc has implemented LR(0), LALR(1) and several

LR(1) parser generation algorithms, it is natural to conduct a

performance study on them.

The data in this study are collected on a Dell Inspiron 600M

computer, with 1.7GHz Intel Pentium processor and 1GB RAM.

The operating system is Fedora core 4.0. The version of Bison is

2.3. For all the measurements, time is in sec (second), memory is

in MB (megabyte). All the algorithms are implemented in Hyacc,

except for the Bison LALR(1) algorithm, which is implemented in

Bison.

The following algorithms are measured in this study. Their

acronyms are introduced here and used in later discussion. There

are three LR(1) algorithms, of these the latter two are reduced-

space: 1) Knuth LR(1): Knuth canonical algorithm, 2) PGM

LR(1): LR(1) based on the practical general method (PGM), 3)

LT LR(1) w/ PGM: LR(1) based on the practical general method,

use PGM in phase 2. There are two LALR(1) algorithms: 1) LT

LALR(1): LALR(1) based on lane-tracing phase 1, 2) Bison

LALR(1): LALR(1) as implemented in Bison. Finally, a LR(0)

algorithm: The traditional LR(0) algorithm.

Table 5. Number of terminals, non-terminals and rules in the

grammars.

 Grammar statistics

Grammar Terminal # Non-Terminal # Rule #

G1 3 3 5

G2 3 7 10

G3 3 7 10

G4 4 3 5

G5 5 3 6

G6 5 4 8

G7 10 8 16

G8 4 6 10

G9 5 3 6

G10 4 4 7

G11 3 5 6

G12 8 10 17

G13 2 5 7

G14 13 10 18

G15 14 15 24

G16 21 19 36

G17 7 10 19

Ada 94 239 459

Algol 60 55 77 169

C 82 64 212

Cobol 184 181 401

C++ 5.0 101 186 665

Delphi 95 169 358

Ftp 52 16 74

Grail 42 32 74

Java 1.1 96 97 266

Matlab 44 35 93

Pascal 65 135 257

Turbo Pascal 71 99 222

Yacc 25 58 103

17 simple grammars were used to test the correctness of

Hyacc. The grammars of 13 real programming languages were

used to check the performance of Hyacc. These real language

grammars were obtained from [21] with minor modifications to fit

in Yacc-style grammar input. Table 5 shows the statistics of these

30 grammars.

3.1 Parsing Table Size Comparison
A comparison of parsing table sizes of the 30 grammars is

shown in Table 6. Fig. 3 contains the 13 real language grammars

only, and is the graphic version of the comparison that better

visualizes the comparison.

We can see that the size of Knuth canonical LR(1) parsing

machine is much bigger than the rest. For the three reduced-space

LR(1) algorithms, the generated parsing machines are only

slightly bigger than LALR(1) parsing machines. LT LR(1) w/

PGM always produces the smallest parsing machine. For Bison,

its state number is always one more than Hyacc. This is because

Bison adds a $end symbol to the end of the goal production, so it

always has one more accept state than Hyacc LALR(1) parsing

machine. Considering this, LT LALR(1) gives the same number

of states as Bison. This validates our implementation.

We can conclude that for given grammars, reduced-space

LR(1) algorithms bring down the parsing machine size

significantly from the Knuth LR(1) parsing machine, and not

much bigger than LALR(1) parsing machine. Actually, if the

parsing machine contains no reduce/reduce error then the

reduced-space LR(1) parsing machine has the same size as the

LALR(1) parsing machine. LT LR(1) w/ PGM results in slightly

more compact LR(1) parsing machine than PGM LR(1). This is

possibly due to the use of weak compatibility in the PGM

algorithm. Use of the strong compatibility can result in a most

compact parsing machine [8].

3.2 Parsing Table Conflict Comparison
A comparison of parsing table conflicts is shown in Table 7.

LT LALR(1) and Bison LALR(1) produce the same number of

shift/reduce and reduce/reduce conflicts for all the grammars

(except for Delphi grammar). LT LR(1) w/ PGM and PGM LR(1)

give the same number of conflicts as LALR(1) (except for Delphi

grammar). Algol60 and C++ have reduce/reduce conflicts in

LR(1) parsing machine, and therefore are not LR(1) grammars.

The other grammars do not have reduce/reduce conflicts in

LALR(1) parsing machine, so no such conflicts in LR(1) parsing

machine too. G2 and G3 are LR(1) grammars, and their

reduce/reduce conflicts in LALR(1) parsing machine are resolved

in LR(1) parsing machine. The parsing machines of some

programming language grammars (Algol60, C++, Delphi) contain

reduce/reduce conflicts that cannot be resolved by LR(1)

algorithms, and are not LR(1) grammars.

3.3 Running Time Comparison
Table 8 shows running time comparison of the 13

programming language grammars. Fig. 4 is the graphic view. The

Knuth LR(1) algorithm takes the longest time. As expected,

reduced-space LR(1) algorithms are faster than Knuth LR(1), and

close to Bison LALR(1), or even faster. And quite

understandable, the LR(0) algorithm runs the fastest.

We can conclude that even though more expensive than the

rest here, Knuth LR(1) parser generation is still practical in

running time, since it takes just a few seconds at most for the

given grammars.

3.4 Memory Usage Comparison
Table 9 shows memory usage comparison of the 13

programming language grammars. Fig. 5 is the graphic view. The

Knuth LR(1) algorithm always uses more or much more memory

than the rest. Reduced-space LR(1) algorithms use much less

memory than Knuth LR(1), and often not much more than

LALR(1). Here although Knuth LR(1) parser generation requires

much more memory than LT LR(1) and PGM LR(1), it is still

acceptable for today’s personal computers, even for grammars as

complex as that of C++ 5.0.

3.5 Conclusion
As expected, the Knuth canonical LR(1) algorithm is still

quite expensive in both running time and space. The generated

parsing machine is big. That said, for the given 13 programming

language grammars, it is practical on today’s hardware. The most

complex grammar of these, the grammar of C++ 5.0, contains 101

terminals, 186 non-terminals and 665 rules. It costs less than 4

seconds and about 120 MB memory to generate the parsing

machine for it.

Despite this, considering the theoretical implication and

actual performance advantage of reduced-space LR(1) algorithms,

we should always use reduced-space algorithms for faster running

speed and less memory usage, as well as a smaller generated

parsing machine.

The practical general method and the lane-tracing algorithm

are such reduced-space LR(1) algorithms. For the given

programming language grammars, they both generate parsing

machines with size close to those of LALR(1) parsing machines,

and time and space requirements not much more expensive than

LALR(1). For LALR(1) grammars, these reduced-space LR(1)

algorithms generate the same parsing tables as those by LALR(1)

algorithm. Only for LR(1) grammars it is more expensive. In this

sense, we can adequately replace LALR(1) parser generators with

LR(1) ones, with no worry in modifying existing projects, and less

worry for projects to come.

Comparing the two reduced-space LR(1) algorithms (PGM,

LT LR(1) w/ PGM), LT LR(1) w/ PGM in general creates a

smaller parsing machine.

The current implementation of practical general method is

based on the concept of weak compatibility. The strong

compatibility may obtain more compression, but requires more

computation and is harder to implement. It should be satisfying to

use weak compatibility.

The practical general method based on weak compatibility is

also much easier to understand and implement than the lane-

tracing algorithm. From the point of view of a LR(1) parser

generator author, there is no reason to go for lane-tracing instead

of the practical general method.

However, the advantage of the lane-tracing algorithm is that

it is easier to extend to LR(k), since it only works on those

configurations and states relevant to resolve reduce/reduce

conflicts. The practical general method, however, has to handle

the entire context tuples for all the configurations and states, and

thus becomes more expensive for increasing k.

Table 6. Parsing table size comparison.

 Hyacc Bison

Grammar Knuth

LR(1)

PGM

LR(1)

LT LR(1)

w/ PGM

LR(0) LT

LALR(1)

LALR(1)

G1 8 8 8 8 8 9

G2 21 20 20 19 19 20

G3 21 20 20 19 19 20

G4 16 9 9 9 9 10

G5 20 11 11 11 11 12

G6 35 14 14 14 14 15

G7 18 18 18 18 18 19

G8 13 13 13 13 13 14

G9 18 10 10 10 10 11

G10 17 10 10 10 10 11

G11 9 9 9 9 9 10

G12 19 19 19 19 19 20

G13 13 13 13 13 13 14

G14 82 40 40 40 40 41

G15 53 53 53 53 53 54

G16 130 73 73 73 73 74

G17 51 32 32 32 32 33

Ada 12786 873 860 860 860 861

Algol 60 1538 274 272 272 272 273

C 1572 349 349 349 349 350

Cobol 2398 657 657 657 657 658

C++ 5.0 9785 1404 1261 1256 1256 1257

Delphi 4215 609 609 609 609 610

Ftp 210 200 200 200 200 201

Grail 719 193 193 193 193 194

Java 1.1 2479 439 428 428 428 429

Matlab 588 174 174 174 174 175

Pascal 2245 418 412 412 412 413

Turbo Pascal 1918 394 386 386 386 387

Yacc 153 128 128 128 128 129

0

2000

4000

6000

8000

10000

12000

14000

A
d

a

A
lg

o
l6

0 C

C
o

b
o

l

C
+

+
5

.0

D
e

lp
h

i

F
tp

G
ra

il

J
a

v
a

M
a

tl
a

b

P
a

s
c

a
l

T
u

rb
o

 P
a

s
c

a
l

Y
a

c
c

Grammar

S
ta
te
 N
u
m
b
e
r

Knuth LR(1)

PGM LR(1)

LT LR(1) w/ PGM

LR(0)

LT LALR(1)

Bison LALR(1)

Figure 3. Parsing Table Size Comparison

Table 7. Parsing table conflict comparison

 Hyacc Bison

Grammar Knuth

LR(1)

PGM

LR(1)

LT LR(1)

w/ PGM

LR(0) LT LALR(1) LALR(1)

 s/r r/r s/r r/r s/r r/r s/r r/r s/r r/r s/r r/r

G1 0 0 0 0 0 0 2 0 0 0 0 0

G2 0 0 0 0 0 0 1 4 0 1 0 1

G3 0 0 0 0 0 0 1 4 0 1 0 1

G4 0 0 0 0 0 0 0 0 0 0 0 0

G5 0 0 0 0 0 0 2 0 0 0 0 0

G6 7 0 4 0 4 0 12 0 4 0 4 0

G7 0 0 0 0 0 0 8 0 0 0 0 0

G8 0 0 0 0 0 0 2 0 0 0 0 0

G9 0 0 0 0 0 0 0 0 0 0 0 0

G10 0 0 0 0 0 0 3 0 0 0 0 0

G11 0 0 0 0 0 0 0 4 0 0 0 0

G12 0 0 0 0 0 0 3 27 0 0 0 0

G13 0 0 0 0 0 0 1 0 0 0 0 0

G14 0 0 0 0 0 0 5 0 0 0 0 0

G15 0 0 0 0 0 0 1 0 0 0 0 0

G16 0 0 0 0 0 0 6 0 0 0 0 0

G17 0 0 0 0 0 0 4 0 0 0 0 0

Ada 0 0 0 0 0 0 260 2526 0 0 0 0

Algol 60 0 4 0 1 0 1 133 336 0 1 0 1

C 2 0 1 0 1 0 214 0 1 0 1 0

Cobol 6 0 5 0 5 0 349 1480 5 0 5 0

C++ 5.0 280 31 24 18 24 18 7140 10812 24 18 24 18

Delphi 316 1191 60 174 58 139 578 1344 15 121 60 174

Ftp 0 0 0 0 0 0 6 0 0 0 0 0

Grail 0 0 0 0 0 0 117 0 0 0 0 0

Java 1.1 2 0 1 0 1 0 236 582 1 0 1 0

Matlab 25 0 14 0 14 0 142 45 14 0 14 0

Pascal 0 0 0 0 0 0 222 264 0 0 0 0

Turbo Pascal 25 0 1 0 1 0 263 288 1 0 1 0

Yacc 8 0 8 0 8 0 60 0 8 0 8 0

Table 8. Time performance comparison (second)

 Hyacc Bison

Grammar Knuth

LR(1)

PGM

LR(1)

LT LR(1)

w/ PGM

LR(0) LT

LALR(1)

LALR(1)

Ada 1.883 0.406 0.172 0.136 0.173 0.155

Algol 60 0.606 0.290 0.509 0.039 0.499 0.174

C 1.047 0.420 0.192 0.067 0.189 0.225

Cobol 0.234 0.127 0.115 0.117 0.113 1.690

C++ 5.0 3.529 1.779 1.261 0.544 1.101 0.705

Delphi 1.141 0.335 0.364 0.093 0.137 0.638

Ftp 0.016 0.017 0.017 0.016 0.017 0.268

Grail 0.051 0.024 0.020 0.017 0.021 0.156

Java 1.1 1.552 1.026 0.350 0.097 0.350 0.339

Matlab 0.351 0.189 0.117 0.034 0.116 0.120

Pascal 0.504 0.174 0.066 0.050 0.066 0.246

Turbo Pascal 0.305 0.098 0.053 0.042 0.054 0.204

Yacc 0.018 0.026 0.016 0.015 0.017 0.157

0

0.5

1

1.5

2

2.5

3

3.5

4

A
d

a

A
lg

o
l

6
0 C

C
o

b
o

l

C
+

+
 5

.0

D
e

lp
h

i

F
tp

G
ra

il

J
a

v
a

 1
.1

M
a

tl
a

b

P
a

s
c

a
l

T
u

rb
o

 P
a

s
c

a
l

Y
a

c
c

Grammar

R
u
n
n
in
g
 T
im
e
 (
s
e
c
)

Knuth LR(1)

PGM LR(1)

LT LR(1) w/ PGM

LR(0)

LT LALR(1)

LALR(1)

Table 9. Memory usage comparison (MB)

 Hyacc Bison

Grammar Knuth LR(1) PGM

LR(1)

LT LR(1)

w/ PGM

LR(0) LT

LALR(1)

LALR(1)

Ada 95.1 7.9 7.9 6.9 7.9 4.0

Algol 60 16.0 4.2 6.4 3.6 5.1 3.9

C 18.9 6.0 5.2 4.3 5.2 4.0

Cobol 19.1 6.3 6.5 6.0 6.5 4.0

C++ 5.0 122.7 23.9 39.1 12.5 19.9 4.3

Delphi 37.4 6.5 14.5 5.5 6.4 3.9

Ftp 2.8 2.8 2.8 2.7 2.8 3.9

Grail 5.3 2.9 2.9 2.8 3.0 3.8

Java 1.1 35.6 7.8 6.3 5.0 6.3 3.8

Matlab 7.8 3.9 3.5 3.0 3.5 3.8

Pascal 18.6 4.9 4.8 4.4 4.8 3.9

Turbo Pascal 13.8 4.3 4.5 4.2 4.5 3.9

Yacc 2.6 2.6 2.6 2.5 2.6 3.9

0

20

40

60

80

100

120

140

A
d

a

A
lg

o
l

6
0 C

C
o

b
o

l

C
+

+
 5

.0

D
e

lp
h

i

F
tp

G
ra

il

J
a

v
a

 1
.1

M
a

tl
a

b

P
a

s
c

a
l

T
u

rb
o

 P
a

s
c

a
l

Y
a

c
c

Grammar

M
e
m
o
ry
 (
M
B
)

Knuth LR(1)

PGM LR(1)

LT LR(1) w / PGM

LR(0)

LT LALR(1)

LALR(1)

Figure 5. Memory Usage Comparison

Figure 4. Running Time Comparison

4. RELATED WORK

4.1 LR(1) Parser Generators Based on the

Practical General Method
We introduce six LR(1) parser generators that implement

Pager’s practical general method. These six parser generators are:

LR, LRSYS, LALR, GDT_PC, Menhir and the Python Parsing

module.

The LR program in ANSI standard Fortran 66 was developed

in 1979 at the Lawrence Livermore National Laboratory [22]. It

was ported to more than nine platforms, and was used to develop

compilers and system utilities. However, it is rarely used today,

and not known to most people. One reason may be because that it

was implemented in a language specifically for science

computation, and not in a general-purpose language. Its rigid and

weird input format also limited its popularity. In addition, the use

of LR is not open to the public and not free.

LRSYS was developed in the Pascal language around 1985,

also at the Lawrence Livermore National Laboratory [23]. It was

based on the LR parser generator. There were versions for

CRAY1, DEC VAX 11 and IBM PC. Parser engines in Pascal,

FORTRAN 77, and C were provided. The CRAY1 and DEC

VAX11 versions also contain engines for LRLTRAN and

CFTFORTRAN 77.

It is reported [24] that Pager’s practical general method was

also used in a parser generator named LALR in 1988,

implemented in the language MACRO-11 on a RSX-11 machine.

It is stated that Pager’s algorithm was also used in GDT_PC

(Grammar Debugging Tool and Parser Constructor) in about

1988.

The Menhir program in Objective Caml was developed

around 2004 in France [19], and the source code is actively

maintained. It implemented Pager’s algorithm with slight

modifications. It has since been widely used in the Caml language

community, quickly replacing the previous Caml parser generator

ocamlyacc.

The Python Parsing module was developed at the beginning

of 2007 [25]. Its author felt that an LALR(1) parser generator

could not meet his needs in developing a grammar in his work. A

wide literature survey led him to Pager’s PGM algorithm. This

parser generator also implemented the CFSM (Characteristic

Finite State Machine) and GLR drivers to handle non-

deterministic and ambiguous grammars. It was released as open

source software in March 2007. The author estimated the Python

implementation to be about 100 times slower than a C

counterpart, which is kind of close to the measurement here.

4.2 LR(1) Parser Generators Based on the

Lane-Tracing Algorithm
The lane-tracing algorithm was implemented by Pager in the

1970s [6][7] However the implementation was done in Assembly

for OS 360, and thus not portable to other platforms. We did not

find other available lane-tracing algorithm implementations.

4.3 LR(1) Parser Generators Based on

Spector’s Splitting Algorithm
Spector created a splitting LR(1) algorithm in the 1980s,

which in concept is similar to Pager’s lane-tracing algorithm. He

implemented the algorithm in an experimental, incomplete parser

generator as described in his 1988 paper [12]. Later, in 1994 the

Muskox parser generator [26] implemented a version of Spector’s

algorithm. The author Boris Burshteyn said that the 1988 paper of

Spector was short of implementation details, so he implemented

the algorithm in a modified way according to his understanding.

4.4 Other LR(1) Parser Generators
More efforts were done along this line. But most of these

other approaches are not formally available in literature, are

implemented in proprietary products and details unknown, or

sometimes are not fully working.

Yacc++ [27][28] is a commercial product. It started as a

LALR(k) parser generator in 1986, then added LR(1) around

1990 using a splitting approach that loosely based on Spector’s

algorithm.

Dr. Parse [29] is another commercial product that claimed to

use LALR(1)/LR(1). Its implementation details are unknown.

MSTA [30] is a part of the open source COCOM toolset, and

is believed to take the splitting approach. It claims

LR(k)/LALR(k), but does not use reduced-space algorithms such

as those by Pager and Spector.

In addition, most recently the IELR(1) algorithm [31][32]

was proposed to provide LR(1) solution to non-LR(1) grammars

with specifications to solve conflicts. The authors implemented

this as an extension of Bison.

5. CONCLUSIONS
LR(1) is a powerful parser generation algorithm for context-

free grammars. However LR(1) parser generation were long

regarded as computationally infeasible. The community has seen

various parser generators using LALR(1) and LL algorithms, but

LR(1) parser generators are still rare. There are however LR(1)

algorithms that can reduce the number of states in a parsing

machine, making LR(1) parser generation practical.

In this work we investigated LR(1) parser generation

algorithms and implemented a parser generator Hyacc, which

supports LR(0)/LALR(1)/LR(1) and partial LR(k). These three

LR(1) algorithms are used: 1) the Knuth canonical algorithm, 2)

Pager’s practical general method, 3) Pager’s lane-tracing

algorithm. Hyacc implemented the traditional LR(0) algorithm,

and implemented LALR(1) based on the first phase of the lane-

tracing algorithm. The partial LR(k) algorithm used is called the

edge-pushing algorithm. Hyacc also implemented Pager’s unit

production elimination algorithm and an extension of it.

Hyacc has been released to the open source community. The

usage of Hyacc is highly similar to the widely used LALR(1)

parser generators Yacc and Bison, which makes it easy to learn

and to be used. Hyacc is written in ANSI C and can be easily

ported to different platforms. In summary, Hyacc is unique in its

wide span of algorithm coverage, efficiency, portability, usability

and availability.

We further conducted a performance study of different LR(1)

algorithms as implemented in Hyacc with each other, and with

LALR(1) algorithm as implemented in Bison. The study was done

on the grammars of 13 programming languages. We have shown

that with reduced-space LR(1) algorithms such as the practical

general method and the lane-tracing algorithm, the time and space

requirements are not much bigger than the LALR(1) algorithm for

these programming languages grammars. It is safe to conclude

that we can take reduced-space LR(1) as an efficient alternative of

its LALR(1) peers.

6. FUTURE WORK
The Yacc directives %union, %type and %nonassoc are not

implemented in Hyacc yet. It is also useful to provide the parse

engine in programming languages other than C to support more

developers, such as in C++ and Java.

7. REFERENCES
[1] Donald E. Knuth. On the translation of languages from left to

right. Information and Control, 8(6):607–639, 1965.

[2] Stephen C. Johnson. YACC – yet another compiler compiler.

CSTR 32, Bell Laboratories, Murray Hill, NJ, 1975.

[3] GNU Bison. http://www.gnu.org/software/bison/

[4] Terence Parr. Obtaining practical variants of LL(k) and

LR(k) for k > 1 by splitting the atomic k-tuple. PhD thesis,

Purdue University, August 1993. http://www.antlr.org/

[5] Xin Chen. LR(1) Parser Generator Hyacc.

http://hyacc.sourceforge.net. January 2008.

[6] David Pager. The lane tracing algorithm for constructing

LR(k) parsers. In Proceedings of the fifth annual ACM

symposium on Theory of computing, pages 172 – 181,

Austin, Texas, United States, 1973.

[7] David Pager. The lane-tracing algorithm for constructing

LR(k) parsers and ways of enhancing its efficiency.

Information Sciences, 12:19–42, 1977.

[8] David Pager. A practical general method for constructing

LR(k) parsers. Acta Informatica, 7:249 – 268, 1977.

[9] David Pager. Eliminating unit productions from LR parsers.

Acta Informatics, 9:31 – 59, 1977.

[10] Xin Chen. Measuring and Extending LR(1) Parser

Generation. PhD thesis, University of Hawaii, August 2009.

[11] David Spector. Full LR(1) parser generation. ACM

SIGPLAN Notices, pages 58 – 66, 1981.

[12] David Spector. Efficient full LR(1) parser generation. ACM

SIGPLAN Notices, 23(12):143–150, 1988.

[13] A. J. Korenjak. Efficient LR(1) processor construction. In

Proceedings of the first annual ACM symposium on Theory

of computing, pages 191– 200, Marina del Rey, California,

United States, 1969.

[14] Masaru Tomita. Efficient Parsing for Natural Language.

Kluwer Academic Publishers, Dordrecht, 1986.

[15] M. D. Mickunas, R. L. Lancaster, and V. B. Schneider.

Transforming LR(k) Grammars to LR(1), SLR(1), and (1,1)

Bounded Right-Context Grammars. J. ACM, 23(3):511-533,

1976.

[16] Charles Donnelly, Richard Stallman. Bison, The YACC-

compatible Parser generator (for Bison Version 1.23). 1993.

[17] Charles Donnelly, Richard Stallman. Bison, The YACC-

compatible Parser generator (for Bison Version 1.24). May

1995.

[18] David Pager. The Lane Table Method Of Constructing LR(1)

Parsers. Technical Report No. ICS2009-06-02, University of

Hawaii, Information and Computer Sciences Department,

May 2008. http://www.ics.hawaii.edu/research/tech-

reports/LaneTableMethod.pdf/view.

[19] Francois Pottier and Yann Regis-Gianas. Parser Generator

Menhir. (2004)

http://cristal.inria.fr/~fpottier/menhir/

[20] Vladimir Makarov. Toolset COCOM & scripting language

DINO. (2002)

http://sourceforge.net/projects/cocom

[21] “Yacc-keable” Grammars.

http://www.angelfire.com/ar/CompiladoresUCSE/COMPILE

RS.html

[22] Charles Wetherell and A. Shannon. LR automatic parser

generator and LR(1) parser. Technical Report UCRL-82926

Preprint, July 1979.

[23] LRSYS. (1991) http://www.nea.fr/abs/html/nesc9721.html

[24] Algirdas Pakstas. (1992)

http://compilers.iecc.com/comparch/article/92-08-109

[25] Parser Generator Parsing.py: An LR(1) parser generator with

CFSM/GLR drivers. (2007)

http://compilers.iecc.com/comparch/article/07-03-076

[26] Boris Burshteyn. MUSKOX Algorithms. (1994)

http://compilers.iecc.com/comparch/article/94-03-067

[27] Yacc++ and the Language Objects Library. (1997 – 2004)

http://world.std.com/~compres

[28] Chris Clark. (2005)

http://compilers.iecc.com/comparch/article/05-06-124

[29] Parser Generator Dr. Parse.

http://www.downloadatoz.com/software-

development_directory/dr-parse

[30] Vladimir Makarov. Toolset COCOM & scripting language

DINO. (2002)

http://sourceforge.net/projects/cocom

[31] Joel E. Denny, Brian A. Malloy. IELR(1): practical LR(1)

parser tables for non-LR(1) grammars with conflict

resolution. Proceedings of the 2008 ACM symposium on

Applied computing, p.240-245, 2008.

[32] Joel E. Denny, Brian A. Malloy, The IELR(1) algorithm for

generating minimal LR(1) parser tables for non-LR(1)

grammars with conflict resolution, Science of Computer

Programming, v.75 n.11, p.943-979, November, 2010

