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Abstract - Removing unit productions from LR parsing 

machines can reduce the space and time cost of parsing. The 

unit production elimination algorithm of Pager may result in 

redundant states in the generated parsing machine. This work 

introduces an extension to remove the redundancy and thus 

minimize the parsing machine. We implemented the unit 

production elimination algorithm and its extension algorithm 

into the Hyacc parser generator. We study its performance 

and discuss relevant issues here. Theoretical analysis and 

experiement result show that when the extension is used, the 

parser generation process uses the same amound of memory, 

but more processing time. The resulted parsing machine can 

be much more compact. 
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1 Introduction 

1.1 Overview 

 A unit production in a grammar is a production of the 
form x � y, where symbol x is a non-terminal, and symbol y 
is a terminal or non-terminal. The existence of unit 
productions in a LR parsing machine can increase parsing 
table size and waste significant amount of parsing space and 
time [1]. Eliminating unit productions is among the most 
attractive approaches to optimize LR parsers.  

 Pager’s unit production elimination algorithm is among 
the most discussed. It is found that the unit production 
elimination algorithm of Pager, when applied, can possibly 
lead to redundant states. This work extended the unit 
production elimination algorithm of Pager [5] by further 
eliminating redundant states and thus minimizing the parsing 
machine. The extension algorithm was implemented in the 
parser generator Hyacc [18][19][20]. Here we present the 
algorithm, analyze its complexity, conduct empirical study on 
its performance and discuss relevant issues.  

 We use these acronyms for the algorithms involved in 
this discussion: PGM (Pager’s practical general method) [6], 
UPE (Pager’s unit production elimination algorithm) [5], 
UPExt (Extension algorithm to Pager’s unit production 
elimination algorithm). In addition, LHS stands for Left Hand 

Side, and RHS stands for Right Hand Side. The discussion 
will be based on LR(1), but should in general apply to LR(k). 

1.2 Related work 

 There have been various studies to eliminate unit 
productions. Anderson, Eve and Horning [1] presented a unit 
production elimination method, but the method can increase 
the number of states in the parsing machine significantly. 
Joliat [8] gave suggestions to simplify the method of 
Anderson, Eve and Horning. Tokuda [15] presented a method 
on bypassed LR(k) parsers, which can naturally derive the 
algorithm of Anderson, Eve and Horning. The methods of 
Aho and Ullman [2] and Demers [9] can avoid increasing the 
number of states in the parsing machine, but require 
restriction on the grammar that no two unit productions 
should have the same left hand side. Pager [3][4][5] described 
an algorithm that can avoid the above problems. Backhouse 
[10] and Lalonde [7] developed variations of Pager’s method. 
Koskimies [11][12] discussed that Pager’s method cannot be 
used during the construction process of a SLR parser and need 
to be used on a fully constructed SLR parser. Soisalon-
Soininen [13] discussed applying Pager’s technique only 
when it does not affect the use of default reductions. Soisalon-
Soininen [14] described that Pager’s method can possibly 
cause increase in the size of the parsing machine and 
presented a fix. Heilbrunner [16] and Schmitz [17] discussed 
practical conditions needed to correctly eliminate unit 
productions. 

2 Pager’s unit production elimination 

algorithm 

 Pager’s unit production elimination algorithm [3] is 
applied to a LR parsing machine to further reduce the number 
of states to achieve a more compact LR parsing machine.  

 A unit production is a production x � y where both x 
and y are single symbols. A leaf is a symbol that only appears 
on the RHS of any unit production but never on the LHS of 
any unit production. The algorithm [3] takes five steps: “1) 
For each state S in the parsing machine (including new states 
added in step 2), and for each leaf x where the x-successor of 
S contains a unit reduction, do step 2. Go to step 3 after 
finish. 2) For 1 ≤ i ≤ n, let xi be the symbols such that xi ≡> x 
(including x itself), and for which shift/goto actions are 



defined at state S. Let the xi-successor of S be Ti. If any state 
R is or at a earlier time has been a combination of states T1, 
…, Tn, then let R be the new x-successor of state S; otherwise 
combine states T1, …, Tn into a new state T and make T the 
new x-successor of S. 3) Delete all the transitions where the 
transition symbol is on the LHS of a unit production. 4) 
Delete all states that now cannot be reached from state 0. 5) 
Replace all such reductions y � w by x � w, where y is the 
LHS symbol of a unit production, and x is a randomly 
selected leaf such that y ≡> x.” 

 Example 1. Given grammar G1: E � E + T | T, T � T 
* a | a. The LR(1) parsing machine of grammar G1 is shown 
in Fig. 1. We have two unit productions that are the 
candidates of elimination: E � T and T � a. 

 An example of applying the unit production elimination 
algorithm on the LR(1) parsing machine of grammar G1 is 
shown in Fig. 2. First we need to find the leaves of the 
grammar. This is achieved by constructing a multi-rooted tree, 
which is E � T � a for G1. In this case a is the only leaf. 
Then following the algorithm step 1, we see that only states 0 
and 4 have a-successor that has a unit production: state 0’s a-
successor state 3 has a unit production T � a, state 4’s a-
successor is also state 3. Thus we follow step 2 to combine 
successor states of state 0 and state 4. These are shown in (b) 
and (c) of Fig. 2. Next, (d) follows step 3, (e) follows step 4, 
(f) follows step 5 and also rearranges the states in a better-
looking layout. 

3 Extension to the unit production 

elimination algorithm 

3.1 The extension algorithm 

 It can be noted that after removing unit productions, the 
parsing machine can possibly contain redundant states with 
the same actions. These redundant states can be combined to 
result in a more compact parsing machine. This is a natural 
extension of Pager’s unit production elimination algorithm. 

 Definition 1. Equivalent states are those states in a 
parsing machine that have exactly the same actions (accept, 
shift, goto and reduce) on each token symbol (including both 
terminals and non-terminals). 

 Algorithm 1 (UPExt) is shown in the next page. It 
removes redundant equivalent states from the parsing 
machine obtained from Pager’s unit production elimination 
algorithm.  

 One concern of the unit production elimination 
algorithm is that it was designed for LR(k) grammars. For 
non-LR(k) grammars, more conflict complications can be 
derived. Under such situations, the unit production 
elimination algorithm and this extension should not be used. 
Another concern is for unit productions with semantic actions, 

these should not be removed so as to retain the associated 
semantic actions. 

3.2 Complexity analysis 

 In practice, this extension algorithm is O(1) in space and 
does not increase the amount of memory used, since it 
operates on the existing parsing machine. But it takes quite a 
large percentage of the execution time, because it looks 
through each entry of the entire parsing table for each state.  

 The worst time performance (upper bound) is O(n2 * m), 
where n is the number of states, and m is the number of tokens 
(both terminals and non-terminals). The best time 
performance (lower bound) is O(n * m). 

 Assume the action of accessing one action of one state is 
O(1). Derivation of upper bound O(n2 * m) using the best 
scenario: the step of finding the set of all the equivalent states 
can be done in linear time by inserting all states into a hash 
table based on its actions. Since there are n states, and assume 
each state has m actions in average, this is O(n * m). The next 
step replaces relevant transitions. Assume those equivalent 

states are S1, S2, …, Sk (k ≤ n). Let the number of actions 
transiting into Si be Xi (i = 1, …, k). In the worst case all the n 
other states transiting to Si and all the m actions of each state 
transit to Si (although this is unlikely in practice), so 0 ≤ Xi ≤ 
n * m. The total number of transitions to replace is 0 ≤ X1 + 
… + Xk ≤ n * (n * m). Thus O(n * m + n * (n * m)) = O(n2 * 
m).  

 For the lower bound O(n * m), just notice that the first 
step of finding the set of all the equivalent states always takes 
O(n * m), and the second step of replacement in the best case 
takes no time when no equivalent states are found. 

3.3 Implementation in Hyacc 

 Pager’s unit production elimination algorithm and the 
extension algorithm here are implemented into LR(1) parser 
generator Hyacc [18][19][20]. 

 Implementation can be on the level of 1) the parsing 
machine automata, or 2) the parsing table. In Hyacc the UPE 
algorithm is implemented by manipulating the parsing table, 
so the extension algorithm UPExt is implemented based on 
this way. We think that manipulating the parsing table is 
easier. The alternative of working on the level of the parsing 
machine automata, however, may be more intuitive from a 
human point of view. 

 Hyacc uses reduced-space LR(1) parser generation 
algorithms, such as Pager’s PGM algorithm. In general the 
user of Hyacc applies the UPE and UPExt algorithms on a 
parser generated from the PGM algorithm or other reduced 
LR(1) algorithms. In the example and empirical studies below 
we assume this scenario.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Parsing machine of grammar G1 

 
Algorithm 1 (UPExt): 
Input: Parsing Machine M 

Output: A parsing machine M’ where all the  

        equivalent states in M are removed; 

 

1  let Shift(X, k) � Y be a Shift transition from  

   state X to state Y on token k; 

2  foreach state S in M do 

3      find the set ∑ of all the equivalent states 

       of state S; 

4      foreach state S’ in ∑ do 

5          foreach Shift(R, k) � S’ in M do 

6              replace it by Shift(R, k) � S; 

7          end 

8      end 

9      remove ∑ from M; 

10 end 

 

 

 

G � ● E       {┤} 
E � ● E + T {┤, +} 
E � ● T        {┤, +} 
T � ● T * a  {┤, *, +} 
T � ● a        {┤, *, +} 

G � E ●       {┤} 
E � E ● + T {┤, +} 

state 0 

state 1 

E � T ●       {┤, +} 
T � T ● * a {┤, *, +} 

state 2 T � a ● {┤, *, +} 

E � E + ● T {┤, +} 
T � ● T * a  {┤, *, +} 
T � ● a        {┤, *, +} 

T � T * ● a {┤, *, +} 

T � T * a ● {┤, *, +} 

E � E + T ● {┤, +} 
T � T ● * a  {┤, *, +} 

T � T * a if {┤, *, +} 

E � E + T if {┤, +} 

T �  a if {┤, *, +} 

  state 3 

state 4 

state 5 state 6 

state 7 

     E 

   a 

     
+ 

   a 
    T 

* 

T 

* 

a 

Accept if {┤} 

E � T if {┤, +} 



 

 

 

 

Fig. 2. Apply Unit Production Elimination on the LR(1) parsing machine of grammar G1 

(a) Original parsing machine. (b) Combine states 1, 2 and 3 to state 8. Remove link 0 � 3 
because there can be only one a-successor for state 0. (c) Combine states 3 and 6 to state 9. 
Remove link 4 � 3 because there can be only one a-successor for state 2. (d) Remove 
transitions corresponding to LHS of unit production: E, T. (e) Remove all states 
unreachable from state 0, and remove their associated action links. (f) Replace LHS of 
reductions to corresponding leaf. 

 

 

 

 

 

 



3.4 An example 

 Example 2. Given grammar G2: S � d i A, A � A T | є, 

T � M | Y | P | B, M � r | c, Y � x | f, P � n | o, B � a | e. 

In Fig. 3, (a) is the parsing machine obtained using the 
practical general method, (b) is the parsing machine after 
applying the unit production elimination algorithm based on 
(a), (c) is the parsing machine after applying the extension to 
the unit production elimination algorithm based on (b). In (b), 
states 18 to 25 all have the same action A � A T for each of 
the lookahead symbols in ∑ = { a, c, e, f, n, o, r, x, ┤}. Thus 
states 18 to 25 are equivalent states and they can be combined 
into one state, i.e., state 18 in (c).  

 In this example, the parsing machine in (a) has 18 states, 
in (b) has 13 states, and in (c) has only 6  states. So  by  
applying the extension algorithm after the unit production 
elimination, (13 - 6) / 13 = 54% reduction in parsing machine 
size is achieved. The following table compares the number of 
states, ‘shift/goto’, ‘reduce’ and ‘accept’ actions in the 
parsing machine after applying each of the PGM, UPE and 
UPExt algorithms. 

4 Measurements And Evaluations 

 Measurement data are collected on a Dell Inspiron 
600M computer with 1.7GHz Intel Pentium CPU and 1 GB 
RAM. Operating system is Fedora core 4.0. In the 
measurements, unit of time is in sec (second), and memory is 
in MB (megabyte). Hyacc version 0.95 is used. In the 
empirical study, we measure the performance on three 
algorithms: PGM, UPE, and UPExt. This is because UPE is 
applied after PGM is applied, and UPExt is applied after UPE 
is applied. We would like to see the difference of parsing 
table size, time and memory costs after applying the UPE and 
UPExt algorithms. The grammars of 13 real programming 
languages [21] are used for the study.  

4.1  Parsing table size comparison 

 Table 2 shows the parsing table size comparison. Fig. 4 
is the graphic view.  

 UPE may decrease the number of states as in the case of 
many simple grammars. but in 12 out of the 13 real 
programming languages here, UPE actually increases it. 
Applying the UPExt algorithm decreases the parsing machine 
size significantly: although in 10 out of the 13 real language 
grammars the number of states are still bigger than that of 
PGM, they are bigger only by a small margin. Therefore it is 
desirable to apply the extension algorithm. In addition, the 
number of rules in the parsing machine is also reduced, since 
unit productions are removed. 

Fig. 3. Remove equivalent states after unit production 
elimination 

 
Table 1.  Parsing machine comparison after applying PGM, UPE and 

UPExt algorithms 

 State # shift/goto reduce accept 
PGM 18 17 15 1 
UPE 13 12 10 1 
UPExt 6 5 3 1 

 



Table 2.  Parsing table size comparison. 

 PGM UPE  UPExt 
Grammar State # Rule # State # Rule # State #  Rule # 
Ada 873 459 1074 262 805 262 
Algol 60 274 169 498 92 412 92 
C 349 212 786 116 380 116 
Cobol 657 401 646 268 528 268 
C++ 5.0 1404 665 3573 443 2255 443 
Delphi 609 358 1195 200 669 200 
Ftp 200 74 211 71 211 71 
Grail 193 74 247 54 204 54 
Java 1.1 439 266 1174 142 673 142 
Matlab 174 93 374 53 178 53 
Pascal 418 257 844 119 427 119 
Turbo  
Pascal 

394 222 649 116 353 116 

Yacc 128 103 134 87 134 87 
 

 
Fig. 4. Parsing table size comparison. 

4.2   Running time comparison 

 Table 3 shows the running time comparison, and Fig. 5 
is the graphic view. Compared to PGM, UPE and UPExt use 
longer running time, sometimes significantly longer, 
especially for the UPExt algorithm. This is as expected. 

Table 3.  Running time comparison 

Grammar PGM  UPE  UPExt 
Ada 0.406 1.342 3.452 
Algol 60 0.290 0.566 0.931 
C 0.420 1.142 1.418 
Cobol 0.127 1.205 1.206 
C++ 5.0 1.779 5.680 33.986 
Delphi 0.335 1.347 4.371 
Ftp 0.017 0.035 0.035 
Grail 0.024 0.066 0.119 
Java 1.1 1.026 1.563 3.328 
Matlab 0.189 0.307 0.637 
Pascal 0.174 1.061 1.787 
Turbo Pascal 0.098 0.587 1.159 
Yacc 0.026 0.043 0.043 

Fig. 5. Running time comparison. 

4.3  Memory usage comparison 

 Table 4 shows the memory usage comparison, and Fig. 6 
is the graphic view. When using UPE and UPExt, there is a 
slight increase in memory. It can also be seen that UPE and 
UPExt use the same amount of memory, because UPExt only 
works on the existing parsing table.  

Table 4.  Memory usage comparison 

Grammar PGM  UPE  UPExt 
Ada 7.9 9.4 9.3 
Algol 60 4.2 4.2 4.2 
C 6.0 6.0 6.0 
Cobol 6.3 6.4 6.4 
C++ 5.0 23.9 30.9 30.9 
Delphi 6.5 7.5 7.5 
Ftp 2.8 2.9 2.9 
Grail 2.9 2.9 2.9 
Java 1.1 7.8 8.6 8.6 
Matlab 3.9 3.9 3.9 
Pascal 4.9 5.7 5.7 
Turbo Pascal 4.3 4.3 4.3 
Yacc 2.6 2.7 2.7 

 

 
 

Fig. 6. Memory usage comparison 
 



5 Conclusions 

 Redundant states exist in the parsing machine after 
applying Pager’s unit production elimination algorithm. An 
extension is used to remove redundant states, and reduces the 
size of the parsing machine significantly. Measurements show 
that when the extension is used, parser generation takes the 
same amount of meory but more time, and the resulted parsing 
machine can be much more compact. Unit production 
elimination algorithm and its extension should be used on LR 
grammars only. 

 Although the extension algorithm does not require extra 
space to run other than needed by the unit production 
elimination algorithm itself, it may need much longer running 
time. Since parser generation is a one-time process, it should 
be worth such an effort. 
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