
An Extension Of

The Unit Production Elimination Algorithm

X. Chen
1
, D. Pager

1

1Department of Information and Computer Science, University of Hawaii at Manoa, Honolulu, HI, USA

Abstract - Removing unit productions from LR parsing

machines can reduce the space and time cost of parsing. The

unit production elimination algorithm of Pager may result in

redundant states in the generated parsing machine. This work

introduces an extension to remove the redundancy and thus

minimize the parsing machine. We implemented the unit

production elimination algorithm and its extension algorithm

into the Hyacc parser generator. We study its performance

and discuss relevant issues here. Theoretical analysis and

experiement result show that when the extension is used, the

parser generation process uses the same amound of memory,

but more processing time. The resulted parsing machine can

be much more compact.

Keywords: unit production elimination, algorithm, extension,
LR

1 Introduction

1.1 Overview

 A unit production in a grammar is a production of the
form x � y, where symbol x is a non-terminal, and symbol y
is a terminal or non-terminal. The existence of unit
productions in a LR parsing machine can increase parsing
table size and waste significant amount of parsing space and
time [1]. Eliminating unit productions is among the most
attractive approaches to optimize LR parsers.

 Pager’s unit production elimination algorithm is among
the most discussed. It is found that the unit production
elimination algorithm of Pager, when applied, can possibly
lead to redundant states. This work extended the unit
production elimination algorithm of Pager [5] by further
eliminating redundant states and thus minimizing the parsing
machine. The extension algorithm was implemented in the
parser generator Hyacc [18][19][20]. Here we present the
algorithm, analyze its complexity, conduct empirical study on
its performance and discuss relevant issues.

 We use these acronyms for the algorithms involved in
this discussion: PGM (Pager’s practical general method) [6],
UPE (Pager’s unit production elimination algorithm) [5],
UPExt (Extension algorithm to Pager’s unit production
elimination algorithm). In addition, LHS stands for Left Hand

Side, and RHS stands for Right Hand Side. The discussion
will be based on LR(1), but should in general apply to LR(k).

1.2 Related work

 There have been various studies to eliminate unit
productions. Anderson, Eve and Horning [1] presented a unit
production elimination method, but the method can increase
the number of states in the parsing machine significantly.
Joliat [8] gave suggestions to simplify the method of
Anderson, Eve and Horning. Tokuda [15] presented a method
on bypassed LR(k) parsers, which can naturally derive the
algorithm of Anderson, Eve and Horning. The methods of
Aho and Ullman [2] and Demers [9] can avoid increasing the
number of states in the parsing machine, but require
restriction on the grammar that no two unit productions
should have the same left hand side. Pager [3][4][5] described
an algorithm that can avoid the above problems. Backhouse
[10] and Lalonde [7] developed variations of Pager’s method.
Koskimies [11][12] discussed that Pager’s method cannot be
used during the construction process of a SLR parser and need
to be used on a fully constructed SLR parser. Soisalon-
Soininen [13] discussed applying Pager’s technique only
when it does not affect the use of default reductions. Soisalon-
Soininen [14] described that Pager’s method can possibly
cause increase in the size of the parsing machine and
presented a fix. Heilbrunner [16] and Schmitz [17] discussed
practical conditions needed to correctly eliminate unit
productions.

2 Pager’s unit production elimination

algorithm

 Pager’s unit production elimination algorithm [3] is
applied to a LR parsing machine to further reduce the number
of states to achieve a more compact LR parsing machine.

 A unit production is a production x � y where both x
and y are single symbols. A leaf is a symbol that only appears
on the RHS of any unit production but never on the LHS of
any unit production. The algorithm [3] takes five steps: “1)
For each state S in the parsing machine (including new states
added in step 2), and for each leaf x where the x-successor of
S contains a unit reduction, do step 2. Go to step 3 after
finish. 2) For 1 ≤ i ≤ n, let xi be the symbols such that xi ≡> x
(including x itself), and for which shift/goto actions are

defined at state S. Let the xi-successor of S be Ti. If any state
R is or at a earlier time has been a combination of states T1,
…, Tn, then let R be the new x-successor of state S; otherwise
combine states T1, …, Tn into a new state T and make T the
new x-successor of S. 3) Delete all the transitions where the
transition symbol is on the LHS of a unit production. 4)
Delete all states that now cannot be reached from state 0. 5)
Replace all such reductions y � w by x � w, where y is the
LHS symbol of a unit production, and x is a randomly
selected leaf such that y ≡> x.”

 Example 1. Given grammar G1: E � E + T | T, T � T
* a | a. The LR(1) parsing machine of grammar G1 is shown
in Fig. 1. We have two unit productions that are the
candidates of elimination: E � T and T � a.

 An example of applying the unit production elimination
algorithm on the LR(1) parsing machine of grammar G1 is
shown in Fig. 2. First we need to find the leaves of the
grammar. This is achieved by constructing a multi-rooted tree,
which is E � T � a for G1. In this case a is the only leaf.
Then following the algorithm step 1, we see that only states 0
and 4 have a-successor that has a unit production: state 0’s a-
successor state 3 has a unit production T � a, state 4’s a-
successor is also state 3. Thus we follow step 2 to combine
successor states of state 0 and state 4. These are shown in (b)
and (c) of Fig. 2. Next, (d) follows step 3, (e) follows step 4,
(f) follows step 5 and also rearranges the states in a better-
looking layout.

3 Extension to the unit production

elimination algorithm

3.1 The extension algorithm

 It can be noted that after removing unit productions, the
parsing machine can possibly contain redundant states with
the same actions. These redundant states can be combined to
result in a more compact parsing machine. This is a natural
extension of Pager’s unit production elimination algorithm.

 Definition 1. Equivalent states are those states in a
parsing machine that have exactly the same actions (accept,
shift, goto and reduce) on each token symbol (including both
terminals and non-terminals).

 Algorithm 1 (UPExt) is shown in the next page. It
removes redundant equivalent states from the parsing
machine obtained from Pager’s unit production elimination
algorithm.

 One concern of the unit production elimination
algorithm is that it was designed for LR(k) grammars. For
non-LR(k) grammars, more conflict complications can be
derived. Under such situations, the unit production
elimination algorithm and this extension should not be used.
Another concern is for unit productions with semantic actions,

these should not be removed so as to retain the associated
semantic actions.

3.2 Complexity analysis

 In practice, this extension algorithm is O(1) in space and
does not increase the amount of memory used, since it
operates on the existing parsing machine. But it takes quite a
large percentage of the execution time, because it looks
through each entry of the entire parsing table for each state.

 The worst time performance (upper bound) is O(n2 * m),
where n is the number of states, and m is the number of tokens
(both terminals and non-terminals). The best time
performance (lower bound) is O(n * m).

 Assume the action of accessing one action of one state is
O(1). Derivation of upper bound O(n2 * m) using the best
scenario: the step of finding the set of all the equivalent states
can be done in linear time by inserting all states into a hash
table based on its actions. Since there are n states, and assume
each state has m actions in average, this is O(n * m). The next
step replaces relevant transitions. Assume those equivalent

states are S1, S2, …, Sk (k ≤ n). Let the number of actions
transiting into Si be Xi (i = 1, …, k). In the worst case all the n
other states transiting to Si and all the m actions of each state
transit to Si (although this is unlikely in practice), so 0 ≤ Xi ≤
n * m. The total number of transitions to replace is 0 ≤ X1 +
… + Xk ≤ n * (n * m). Thus O(n * m + n * (n * m)) = O(n2 *
m).

 For the lower bound O(n * m), just notice that the first
step of finding the set of all the equivalent states always takes
O(n * m), and the second step of replacement in the best case
takes no time when no equivalent states are found.

3.3 Implementation in Hyacc

 Pager’s unit production elimination algorithm and the
extension algorithm here are implemented into LR(1) parser
generator Hyacc [18][19][20].

 Implementation can be on the level of 1) the parsing
machine automata, or 2) the parsing table. In Hyacc the UPE
algorithm is implemented by manipulating the parsing table,
so the extension algorithm UPExt is implemented based on
this way. We think that manipulating the parsing table is
easier. The alternative of working on the level of the parsing
machine automata, however, may be more intuitive from a
human point of view.

 Hyacc uses reduced-space LR(1) parser generation
algorithms, such as Pager’s PGM algorithm. In general the
user of Hyacc applies the UPE and UPExt algorithms on a
parser generated from the PGM algorithm or other reduced
LR(1) algorithms. In the example and empirical studies below
we assume this scenario.

Fig. 1. Parsing machine of grammar G1

Algorithm 1 (UPExt):
Input: Parsing Machine M

Output: A parsing machine M’ where all the

 equivalent states in M are removed;

1 let Shift(X, k) � Y be a Shift transition from

 state X to state Y on token k;

2 foreach state S in M do

3 find the set ∑ of all the equivalent states

 of state S;

4 foreach state S’ in ∑ do

5 foreach Shift(R, k) � S’ in M do

6 replace it by Shift(R, k) � S;

7 end

8 end

9 remove ∑ from M;

10 end

G � ● E {┤}
E � ● E + T {┤, +}
E � ● T {┤, +}
T � ● T * a {┤, *, +}
T � ● a {┤, *, +}

G � E ● {┤}
E � E ● + T {┤, +}

state 0

state 1

E � T ● {┤, +}
T � T ● * a {┤, *, +}

state 2 T � a ● {┤, *, +}

E � E + ● T {┤, +}
T � ● T * a {┤, *, +}
T � ● a {┤, *, +}

T � T * ● a {┤, *, +}

T � T * a ● {┤, *, +}

E � E + T ● {┤, +}
T � T ● * a {┤, *, +}

T � T * a if {┤, *, +}

E � E + T if {┤, +}

T � a if {┤, *, +}

 state 3

state 4

state 5 state 6

state 7

 E

 a

+

 a
 T

*

T

*

a

Accept if {┤}

E � T if {┤, +}

Fig. 2. Apply Unit Production Elimination on the LR(1) parsing machine of grammar G1

(a) Original parsing machine. (b) Combine states 1, 2 and 3 to state 8. Remove link 0 � 3
because there can be only one a-successor for state 0. (c) Combine states 3 and 6 to state 9.
Remove link 4 � 3 because there can be only one a-successor for state 2. (d) Remove
transitions corresponding to LHS of unit production: E, T. (e) Remove all states
unreachable from state 0, and remove their associated action links. (f) Replace LHS of
reductions to corresponding leaf.

3.4 An example

 Example 2. Given grammar G2: S � d i A, A � A T | є,

T � M | Y | P | B, M � r | c, Y � x | f, P � n | o, B � a | e.

In Fig. 3, (a) is the parsing machine obtained using the
practical general method, (b) is the parsing machine after
applying the unit production elimination algorithm based on
(a), (c) is the parsing machine after applying the extension to
the unit production elimination algorithm based on (b). In (b),
states 18 to 25 all have the same action A � A T for each of
the lookahead symbols in ∑ = { a, c, e, f, n, o, r, x, ┤}. Thus
states 18 to 25 are equivalent states and they can be combined
into one state, i.e., state 18 in (c).

 In this example, the parsing machine in (a) has 18 states,
in (b) has 13 states, and in (c) has only 6 states. So by
applying the extension algorithm after the unit production
elimination, (13 - 6) / 13 = 54% reduction in parsing machine
size is achieved. The following table compares the number of
states, ‘shift/goto’, ‘reduce’ and ‘accept’ actions in the
parsing machine after applying each of the PGM, UPE and
UPExt algorithms.

4 Measurements And Evaluations

 Measurement data are collected on a Dell Inspiron
600M computer with 1.7GHz Intel Pentium CPU and 1 GB
RAM. Operating system is Fedora core 4.0. In the
measurements, unit of time is in sec (second), and memory is
in MB (megabyte). Hyacc version 0.95 is used. In the
empirical study, we measure the performance on three
algorithms: PGM, UPE, and UPExt. This is because UPE is
applied after PGM is applied, and UPExt is applied after UPE
is applied. We would like to see the difference of parsing
table size, time and memory costs after applying the UPE and
UPExt algorithms. The grammars of 13 real programming
languages [21] are used for the study.

4.1 Parsing table size comparison

 Table 2 shows the parsing table size comparison. Fig. 4
is the graphic view.

 UPE may decrease the number of states as in the case of
many simple grammars. but in 12 out of the 13 real
programming languages here, UPE actually increases it.
Applying the UPExt algorithm decreases the parsing machine
size significantly: although in 10 out of the 13 real language
grammars the number of states are still bigger than that of
PGM, they are bigger only by a small margin. Therefore it is
desirable to apply the extension algorithm. In addition, the
number of rules in the parsing machine is also reduced, since
unit productions are removed.

Fig. 3. Remove equivalent states after unit production
elimination

Table 1. Parsing machine comparison after applying PGM, UPE and

UPExt algorithms

 State # shift/goto reduce accept
PGM 18 17 15 1
UPE 13 12 10 1
UPExt 6 5 3 1

Table 2. Parsing table size comparison.

 PGM UPE UPExt
Grammar State # Rule # State # Rule # State # Rule #
Ada 873 459 1074 262 805 262
Algol 60 274 169 498 92 412 92
C 349 212 786 116 380 116
Cobol 657 401 646 268 528 268
C++ 5.0 1404 665 3573 443 2255 443
Delphi 609 358 1195 200 669 200
Ftp 200 74 211 71 211 71
Grail 193 74 247 54 204 54
Java 1.1 439 266 1174 142 673 142
Matlab 174 93 374 53 178 53
Pascal 418 257 844 119 427 119
Turbo
Pascal

394 222 649 116 353 116

Yacc 128 103 134 87 134 87

Fig. 4. Parsing table size comparison.

4.2 Running time comparison

 Table 3 shows the running time comparison, and Fig. 5
is the graphic view. Compared to PGM, UPE and UPExt use
longer running time, sometimes significantly longer,
especially for the UPExt algorithm. This is as expected.

Table 3. Running time comparison

Grammar PGM UPE UPExt
Ada 0.406 1.342 3.452
Algol 60 0.290 0.566 0.931
C 0.420 1.142 1.418
Cobol 0.127 1.205 1.206
C++ 5.0 1.779 5.680 33.986
Delphi 0.335 1.347 4.371
Ftp 0.017 0.035 0.035
Grail 0.024 0.066 0.119
Java 1.1 1.026 1.563 3.328
Matlab 0.189 0.307 0.637
Pascal 0.174 1.061 1.787
Turbo Pascal 0.098 0.587 1.159
Yacc 0.026 0.043 0.043

Fig. 5. Running time comparison.

4.3 Memory usage comparison

 Table 4 shows the memory usage comparison, and Fig. 6
is the graphic view. When using UPE and UPExt, there is a
slight increase in memory. It can also be seen that UPE and
UPExt use the same amount of memory, because UPExt only
works on the existing parsing table.

Table 4. Memory usage comparison

Grammar PGM UPE UPExt
Ada 7.9 9.4 9.3
Algol 60 4.2 4.2 4.2
C 6.0 6.0 6.0
Cobol 6.3 6.4 6.4
C++ 5.0 23.9 30.9 30.9
Delphi 6.5 7.5 7.5
Ftp 2.8 2.9 2.9
Grail 2.9 2.9 2.9
Java 1.1 7.8 8.6 8.6
Matlab 3.9 3.9 3.9
Pascal 4.9 5.7 5.7
Turbo Pascal 4.3 4.3 4.3
Yacc 2.6 2.7 2.7

Fig. 6. Memory usage comparison

5 Conclusions

 Redundant states exist in the parsing machine after
applying Pager’s unit production elimination algorithm. An
extension is used to remove redundant states, and reduces the
size of the parsing machine significantly. Measurements show
that when the extension is used, parser generation takes the
same amount of meory but more time, and the resulted parsing
machine can be much more compact. Unit production
elimination algorithm and its extension should be used on LR
grammars only.

 Although the extension algorithm does not require extra
space to run other than needed by the unit production
elimination algorithm itself, it may need much longer running
time. Since parser generation is a one-time process, it should
be worth such an effort.

6 References

[1] T. Anderson, J. Eve, and J. J. Horning. Efficient LR(1)
parsers. Acta Informatica, 2:12–39, 1973.

[2] Alfred V. Aho and Jeffrey D. Ullman. A technique for
speeding up LR(k) parsers. SIAM J. Computing, 2:2, 106-
127. 1973.

[3] David Pager. On eliminating unit productions from
LR(k) parsers. Technical Report PE 245, University of
Hawaii, Honolulu. 1973.

[4] David Pager. On eliminating unit productions from
LR(k) parsers. Automata, Languages and Programming,
Lecture Notes in Computer Science, Volume 14, 242-254.
1974.

[5] David Pager. Eliminating unit productions from LR
parsers. Acta Informatics, 9:31 – 59, 1977.

[6] David Pager. A practical general method for
constructing LR(k) parsers. Acta Informatica, 7:249 – 268,
1977.

[7] Wilf R. LaLonde, On directly constructing LR(k) parsers
without chain reductions, Proceedings of the 3rd ACM
SIGACT-SIGPLAN symposium on Principles on
programming languages, p.127-133, January 19-21, 1976,
Atlanta, Georgia.

[8] M. L. Joliat. A Simple Technique for Partial Elimination
of Unit Productions from LR(k) Parsers. IEEE Transactions
on Computers, Volume 25 Issue 7, 763-764, July 1976, IEEE
Computer Society Washington, DC, USA

[9] Demers, A. J. Elimination of single productions and
merging nonterminal symbols of LR(1) grammars. Computer
Languages 1:2, 105-119. 1975.

[10] Backhouse, R. C. An alternative approach to the
improvement of LR(k) parsers. Acta Informatica 6:3, 277-
296. 1976.

[11] Koskimies, Kai {1976} Optimization of LR(k) parsers
(in Finnish). M.Sc. Thesis, University of Helsinki, Helsinki.

[12] Koskimies, Kai (1979) On a method for optimizing LR
parsers. International Journal of Computer Mathematics 7(4).

[13] Eljas Soisalon-Soininen. Elimination of single
productions from LR parsers in conjunction with the use of
default reductions. 1977.

[14] Eljas Soisalon-Soininen. On the space optimizing effect
of eliminating single productions from LR parsers. Acta
Informatica. Volume 14, Number 2, 157-174. 1980.

[15] Takehiro Tokuda. Eliminating unit reductions from
LR(k) parsers using minimum contexts. Acta Informatica.
Volume 15, Number 4, 447-470. 1981.

[16] Stephan Heilbrunner. Practical conditions for correct
elimination of chain productions from LR parsers. Length 77
pages. Hochsch. der Bundeswehr München, Fachbereich
Informatik, 1983.

[17] Schmitz, Lothar (1984) On the correct elimination of
chain productions from lr parsers. International Journal of
Computer Mathematics 15(1-4)

[18] Xin Chen. LR(1) Parser Generator Hyacc. Available:
http://hyacc.sourceforge.net. January 2008.

[19] Xin Chen, David Pager. LR(1) Parser Generator Hyacc.
Proceedings of International Conference on Software
Engineering Research and Practice, p.471-477.
WORLDCOMP'11, Las Vegas, July 18-21, 2011.

[20] Xin Chen, David Pager. Full LR(1) Parser Generator
Hyacc And Study On The Performance of LR(1) Algorithms.
Proceedings of The Fourth International C* Conference on
Computer Science & Software Engineering, p.83-92.
Montreal, Canada, May 16-18, 2011.

[21] “Yacc-keable” Grammars. Available:
http://www.angelfire.com/ar/CompiladoresUCSE/COMPILE
RS.html

