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Abstract - The space and time cost of LR parser generation 

is high. Robust and effective LR(1) parser generators are 

rare to find. This work employed the Knuth canonical 

algorithm, Pager’s practical general method, lane-tracing 

algorithm, and other relevant algorithms, implemented an 

efficient, practical and open-source parser generator Hyacc 

in ANSI C, which supports full LR(0)/LALR(1)/LR(1) and 

partial LR(k), and is compatible with Yacc and Bison in 

input format and command line user interface. In this paper 

we introduce Hyacc, and give a brief overview on its 

architecture, parse engine, storage table, precedence and 

associativity handling, error handling, data structures, 

performance and usage. 

Keywords: Hyacc, LR(1), Parser Generator, Compiler, 

Software tool 

 

1 Introduction 

  The canonical LR(k) algorithm [1] proposed by Knuth 

in 1965 is a powerful parser generation algorithm for 

context-free grammars. It was potentially exponential in time 

and space to be of practical use. Alternatives to LR(k) 

include the LALR(1) algorithm used in parser generators 

such as Yacc and later Bison, and the LL algorithm used by 

parser generators such as ANTLR. However, LALR and LL 

are not as powerful as LR. Good LR(k) parser generator 

remains scarce, even for the case k = 1. 

 This work has developed Hyacc, an efficient and 

practical open source full LR(0)/LALR(1)/LR(1) and partial 

LR(k) parser generation tool in ANSI C. It is compatible 

with Yacc and Bison. The LR(1) algorithms employed are 

based on 1) the  canonical algorithm of Knuth [1], 2) the 

lane-tracing algorithm of Pager [2][3], which reduces 

parsing machine size by splitting from a LALR(1) parsing 

machine that contains reduce-reduce conflicts, and 3) the 

practical general method of Pager [4], which reduces parsing 

machine size by merging compatible states from a parsing 

machine obtained by Knuth’s method. The LR(0) algorithm 

used in Hyacc is the traditional one. The LALR(1) algorithm 

used in Hyacc is based on the first phase of the lane-tracing 

algorithm. LR(0) and LALR(1) are implemented because 

Pager’s lane-tracing algorithm depends on these as the first 

step. The LR(k) algorithm is called the edge-pushing 

algorithm [5] based on recursively applying the lane-tracing 

process, and works for a subclass of LR(k) grammars. As a 

side optimization, Hyacc also implemented the unit 

production elimination algorithm of Pager [6] and its 

extension [5].  

2 The Hyacc Parser Generator 

2.1 Overview 

 Hyacc is pronounced as “HiYacc”. It is an efficient and 

practical parser generator written from scratch in ANSI C, 

and is easy to port to other platforms. Hyacc is open source. 

Version 0.9 was released in January 2008 [7]. Version 0.95 

was released in April 2009. Version 0.97 was released in 

January 2011. 

 Hyacc is released under the GPL license. But the 

LR(1) parse engine file hyaccpar and LR(k) parse engine file 

hyaccpark are under the BSD license so that the parser 

generators created by Hyacc can be used in both open source 

and proprietary software. This addresses the copyright 

problem that Richard Stallman discussed in “Conditions for 

Using Bison” of his Bison manuals [8][9]. 

 The algorithms employed by Hyacc are listed in the 

introduction.  

 Hyacc is compatible to Yacc and Bison in its input file 

format, ambiguous grammar handling and error handling. 

These directives from Yacc and Bison are implemented in 

Hyacc: %token, %left, %right, %expect, %start, %prec. 

Hyacc can be used together with the lexical analyser Lex. It 

can generate rich debug information in the parser generation 

process, and store these in a log file for review.  

 If specified, the generated parser can record the parsing 

steps in a file, which makes it easy for debugging and 

testing. It can also generate a Graphviz input file for the 

parsing machine. With this input, Graphviz can draw an 

image of the parsing machine. 

2.2 Architecture 

 Hyacc first gets command line switch options, then 

reads from the grammar input file. Next, it creates the 

parsing machine according to different algorithms as 

specified by the command line switches. Then it writes the 

generated parser to y.tab.c, and optionally, y.output and 

y.gviz. y.tab.c is the parser with the parsing machine stored 



in arrays. y.output contains all kinds of information needed 

by the compiler developer to understand the parser 

generation process and the parsing machine. y.gviz can be 

used as the input file to Graphviz to generate a graph of the 

parsing machine. 

 

 

 

 

 

 

Fig. 1. Relationship of algorithms from the point of view of 

grammar processing 1 

 Fig. 1 shows how the algorithms used in Hyacc are 

structured from the point of view of grammar processing. 

Input grammars can be processed by the merging path on the 

left, first by the Knuth canonical algorithm and stop here, or 

be further processed by Pager’s PGM algorithm.  

 Input grammars can also be processed by the splitting 

path on the right. First the LR(0) parsing machine is 

generated. Next the LALR(1) parsing machine is generated 

by the first phase of the lane-tracing algorithm. If reduce-

reduce conflicts exist, this is not a LALR(1) grammar, and 

the second phase of lane-tracing is applied to generate the 

LR(1) parsing machine. There are two methods for the 

second phase of lane-tracing. One is based on the PGM 

method [4], the other is based on the lane table method [10]. 

If LR(1) cannot resolve all the conflicts, this may be a LR(k) 

grammar and the LR(k) process is applied. 

 The generated LR(1) parsing machine may contain unit 

productions that can be eliminated by applying the UPE 

algorithm and its extension. 

 Fig. 2 shows the relationship of the algorithms from the 

point of view of implementation, i.e., how one algorithm is 

based on the other. 

                                                           
1 Knuth LR(1) – Knuth canonical algorithm, PGM LR(1) – Pager’s 

practical general method, LT LALR(1) – LALR(1) based on lane-

tracing phase 1, LT LR(1) w/ PGM – lane-tracing LR(1) algorithm 

based on Pager’s practical general method, LT LR(1) w/ LTT – 

lane-tracing LR(1) algorithm based on Pager’s lane table method, 

UPE – Pager’s unit production elimination algorithm, UPT Ext – 

Extension algorithm to Pager’s unit production elimination 

algorithm. 

 

 

 

 

 

 

 

Fig. 2. Relationship of algorithms from the point of view of 

implementation 

2.3 The LR(1) Parse Engine 

 Similar to the yaccpar file of Yacc, the hyaccpar file is 

the parse engine of Hyacc. The parser generation process 

embeds the parsing table into hyaccpar. How the hyaccpar 

LR(1) parse engine works is shown in Algorithm 1. 

Algorithm 1: The hyaccpar LR(1) parse engine algorithm.2 
1  Initialization: 
2  push state 0 onto state_stack; 
 
3  while next token is not EOF do { 

4    S � current state; 
5    L � next token/lookahead; 
6    A � action of(S, L) in parsing table; 
7    if A is shift then { 
8      push target state on state_stack, 
9        pop lookahead symbol; 
10     update S and L; 
11   } else if A is reduce then { 
12     output code for this reduction; 
13     r1 � LHS symbol of reduction A; 
14     r2 � RHS symbol count of A; 
15     pop r2 states from state_stack, 
16       update current state S; 
17     Atmp � action for (S, r1); 
18     push target goto state Atmp to   
         state_stack; 
19   } else if A is accept then { 
20     if next token is EOF then { 
21       is valid accept, exit; 
22     } else { 
23       is error, error recovery or exit; 
24     } 
25   } else { 
26     is error, do error recovery; 
27   } 
28 } 

 

 In Algorithm 1, a state stack is used to keep track of 

the current status of traversing the state machine. The 

parameter ‘S’ or current state is the state on the top of the 

                                                           
2 LHS – Left Hand Side, RHS – Right Hand Side. 
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state stack. The parameter ‘L’ or lookahead is the symbol 

used to decide the next action from the current state. The 

parameter ‘A’ or action is the action to take, and is found by 

checking the parsing table entry (S, L). ‘�’ denotes 

assignment operation. This parse engine is similar to the 

one used in Yacc, but there are variation in the details, such 

as the storage parsing table, as discussed in the next section. 

TABLE 1.  STORAGE ARRAYS FOR THE PARSING MACHINE IN HYACC 

PARSE ENGINE. 

Array name Explanation 

yyfs[] List the default reduction for each state. If a state 

has no default reduction, its entry is 0.  

Array size = n. 

yyrowoffset[] The offset of parsing table rows in arrays 

yyptblact[] and yyptbltok[]. Array size = n. 

yyptblact[] Destination state of an action (shift/goto/reduce/ 

accept). 

If yyptblact[i] is positive, action is ‘shift/goto’, 

If yyptblact[i] is negative, action is ‘reduce’, 

If yyptblact[i] is 0, action is ‘accept’. 

If yyptblact[i] is -10000000, labels array end. 

Array size = p. 

yyptbltok[] The token for an action. 

If yyptbltok[i] is positive, token is terminal, 

If yyptbltok[i] is negative, token is non-terminal. 

If yyptbltok[i] is -10000001, is place holder for 

a row. 

If yyptbltok[i] is -10000000, labels array end. 

Array size = p. 

yyr1[] If the LHS symbol of rule i is a non-terminal, 

and its index among non-terminals (in the order 

of appearance in the grammar rules) is x, then 

yyr1[i] = -x. If the LHS symbol of rule i is a 

terminal and its token value is t, then yyr1[i] = t.  

Note yyr1[0] is a placeholder and not used. 

Note this is different from yyr1[] of Yacc or 

Bison, which only have non-terminals on the 

LHS of its rules, so the LHS symbol is always a 

non-terminal, and yyr1[i] = x, where x is defined 

the same as above.  

Array size = r. 

yyr2[] Same as Yacc yyr2[]. Let x[i] be the number of 

RHS symbols of rule i, then yyr2[i] = x[i] << 1 

+ y[i], where y[i] = 1 if production i has 

associated semantic code, y[i] = 0 otherwise. 

Note yyr2[0] is a placeholder and not used. 

This array is used to generate semantic actions. 

Array size = r. 

yynts[] List of non-terminals.  

This is used only in debug mode. 

Array size = number of non-terminals + 1. 

yytoks[] List of tokens (terminals).  

This is used only in debug mode. 

Array size = number of terminals + 1. 

yyreds[] List of the reductions.  

Note this does not include the augmented rule.  

This is used only in debug mode. 

Array size = r. 

2.4 Storing the Parsing Table 

2.4.1 Storage tables 

 The following describes the arrays that are used in 

hyaccpar to store the parsing table. 

 Let the parsing table have n rows (states) and m 

columns (number of terminals and non-terminals). Assuming 

there are r rules (including the augmented rule), and the 

number of non-empty entries in the parsing table is p. Table 

1 lists all the storage arrays and explains their usage. 

2.4.2 Complexity 

 Suppose in state i there is a token j, we can find if an 

action exists by looking at the yyptbltok table from 

yyptbltok[yyrowoffset[i]] to yyptbltok[yyrowoffset[i+1]-1]: 

i) If yyptbltok[k] == j, yyptblact[k] is the associated action; 

ii) If yyptblact[k] > 0, this is a ‘shift/goto’ action; 

iii) If yyptblact[k] < 0, is a reduction, then use yyr1 and yyr2 

to find number of states to pop and the next state to goto; 

iv) If yyptblact[k] == 0 then it is an ‘accept’ action, which is 

valid when j is the end of an input string. 

 The space used by the storage is: 2n + 2p + 3r + (m + 

2). In most cases the parsing table is a sparse matrix. In 

general, 2n + 2p + 3r + (m + 2) < n*m. 

 For the time used, the main factor is when searching 

through the yyptbltok array from yyptbltok[yyrowoffset[i]] 

to yyptbltok[yyrowoffset[i+1]-1]. Now it is linear search and 

takes O(n) time. This can be made faster by binary search, 

which is possible if terminals and non-terminals are sorted 

alphabetically. Then time complexity will be O(ln(n)). It can 

be made such that time complexity is O(1), by using the 

double displacement method which stores the entire row of 

each state. That would require more space though. 

2.4.3 Example 

 An example is given to demonstrate the use of these 

arrays to represent the parsing table. Given grammar G1: 

 E � E + T | T 

 T � T * a | a 

 The parsing table is shown in Table 2. Here the parsing 

table has n = 8 rows, m = 6 columns, and r = 5 rules 

(including the augmented rule). The actual storage arrays in 

the hyaccpar parse engine are shown in Table 3. 

 Array yyfs[] lists the default reduction for each state: 

state 3 has default reduction on rule 4, and state 7 has 

default reduction on rule 3. 



 Array yyrowoffset[] defines the offset of parsing table 

rows in arrays yyptblact[] and yyptbltok[]. E.g., row 1 starts 

at offset 0, row 2 starts at offset 3. 

 Array yyptblact[] is the destination state of an action. 

The first entry is 97, which can be seen in the yytoks[] array. 

The second entry is 1, which stands for non-terminal E. And 

as we see in the parsing table, entry (0, a) has action s3, 

entry (0, E) has action g1, thus in yyptblact[] we see 

correspondingly the first entry is 3, and the second entry is 

1. Entry -10000000 in both yyptblact[] and yyptbltok[] 

labels the end of the array. Entry 0 in yyptblact[] labels the 

accept action. Entry 0 in yyptbltok[] stands for the token end 

marker $. Entry -10000001 in yyptbltok[] labels that this 

state (row in parsing table) has no other actions but the 

default reduction. -10000001 is just a dummy value that is 

never used, and servers as a place holder so yyrowoffset[] 

can have a corresponding value for this row.  

 Entries of array yyr1[] and array yyr2[] are defined as 

in Table 1, and it is easy to see the correspondence of the 

values. 

2.5 Handling Precedence and Associativity 

 The way that Hyacc handles precedence and 

associativity is the same as Yacc and Bison. By default, in a 

shift/reduce conflict, shift is chosen; in a reduce/reduce 

conflict, the reduction whose rule appears first in the 

grammar is chosen. But this may not be what the user wants. 

So %left, %right and %nonassoc are used to declare tokens 

and specify customized precedence and associativity.  

2.6 Error Handling 

 Error handling is the same as in Yacc. There have been 

abundant complaints about the error recovery scheme of 

Yacc. We are concentrating on LR(1) algorithms instead of 

better error recovery. Also we want to keep compatible with 

Yacc and Bison. For these reasons we keep the way that 

Yacc handles errors. 

2.7 Data Structures 

 A symbol table is implemented by hash table, and uses 

open-chaining to store elements in a linked list at each 

bucket. The symbol table is used to achieve O(1) 

performance for many operations. All the symbols used in 

the grammar are stored as a node in this symbol table. Each 

node also contains other information about each symbol. 

Such information are calculated at the time of parsing the 

grammar file and stored for later use. 

 

 

TABLE 2.  PARSING TABLE FOR GRAMMAR G1 

State $ + * a E T 

0 0 0 0 s3 g1 g2 

1 a0 s4 0 0 0 0 

2 r2 r2 s5 0 0 0 

3 r4 r4 r4 0 0 0 

4 0 0 0 s3 0 g6 

5 0 0 0 s7 0 0 

6 r1 r1 s5 0 0 0 

7 r3 r3 r3 0 0 0 

 

TABLE 3.  STORAGE TABLES IN HYACC LR(1) PARSE ENGINE  

FOR GRAMMAR G1 

#define YYCONST const 
typedef int yytabelem; 
 
static YYCONST yytabelem yyfs[] = {0, 0, 
0, -4, 0, 0, 0, -3}; 
 
static YYCONST yytabelem yyptbltok[] = { 
97, -1, -2, 0, 43, 0, 43, 42, -10000001, 97, 
-2, 97, 0, 43, 42, -10000001, -10000000}; 
 
static YYCONST yytabelem yyptblact[] = { 
3, 1, 2, 0, 4, -2, -2, 5, -4, 3,  
6, 7, -1, -1, 5, -3, -10000000}; 
 
static YYCONST yytabelem yyrowoffset[] = { 
0, 3, 5, 8, 9, 11, 12, 15, 16}; 
 
static YYCONST yytabelem yyr1[] = { 
     0,    -1,    -1,    -2,    -2}; 
static YYCONST yytabelem yyr2[] = { 
     0,     6,     2,     6,     2}; 
 
#ifdef YYDEBUG 
 
typedef struct {char *t_name; int t_val;} 
yytoktype; 
 
yytoktype yynts[] = { 
 "E", -1, 
 "T", -2, 
 "-unknown-", 1  /* ends search */ 
}; 
yytoktype yytoks[] = { 
 "a", 97, 
 "+", 43, 
 "*", 42, 
 "-unknown-", -1  /* ends search */ 
}; 
char * yyreds[] = { 
 "-no such reduction-" 
 "E : 'E' '+' 'T'",  
 "E : 'T'",  
 "T : 'T' '*' 'a'",  
 "T : 'a'",  
}; 
#endif /* YYDEBUG */ 

 

 



 Linked list, static arrays, dynamic arrays and hash 

tables are used where appropriate. Sometimes multiple data 

structures are used for the same object, and which one to use 

depends on the particular circumstance.  

 In the parsing table, the rows index the states (e.g., row 

1 represents actions of state 1), and the columns stand for 

the lookahead symbols (both terminals and non-terminals) 

upon which shift/goto/reduce/accept actions take place. The 

parsing table is implemented as a one dimensional integer 

array. Each entry [row, col] is accessed as entry [row * 

column size + col]. In the parsing table positive numbers are 

for ‘shift’, negative numbers are for ‘reduce’, -10000000 is 

for ‘accept’ and 0 is for ‘error’.  

 There is no size limit for any data structures. They can 

grow until they consume all the memory. However, Hyacc 

artificially sets an upper limit of 512 characters for the 

maximal length of a symbol. 

2.8 Performance 

 The performance of Hyacc is compared to other LR(1) 

parser generators. Menhir [11] and MSTA [12] are both 

very efficiently and robustly implemented. Table 4 and 

Table 5 show the running time comparison of the three 

parser generators on C++ and C grammars. The speeds are 

similar. MSTA, implemented in C++, is a handy choice for 

industry users. It does not use reduced-space LR(1) 

algorithms though, thus always results in larger parsing 

machines. Menhir uses Pager’s PGM algorithm, but is 

implemented in Caml, which is not so popular in industry. 

Therefore Hyacc should be a favorable choice. 

TABLE 4.  RUNNING TIME (SEC) COMPARISON OF MENHIR, MSTA AND 

HYACC ON C++ GRAMMAR. 

 Knuth LR(1) PG MLR(1) LALR(1) 

Menhir 1.97 1.48 N/A 

MSTA 5.32 N/A 1.17 

Hyacc 3.53 1.78 1.10 

 

TABLE 5.  RUNNING TIME (SEC) COMPARISON OF MENHIR, MSTA AND 

HYACC ON C GRAMMAR. 

 Knuth LR(1) PG MLR(1) LALR(1) 

Menhir 1.64 0.56 N/A 

MSTA 0.92 N/A 0.13 

Hyacc 1.05 0.42 0.19 

 

2.9 Usage 

 From the sourceforge.net homepage of Hyacc [7] a 

user can download the source packages for unix/linux and 

windows, and the binary package for windows. All the 

instructions on installation and usage are available in the 

included readme file. It is very easy to use, especially for 

users familiar with Yacc and/or Bison. 

 Hyacc is a command line utility. To start hyacc, use: 

“hyacc input_file.y [-bcCdDghKlmnoOPQRStvV]”. The 

input grammar file input_file.y has the same format as those 

used by Yacc/Bison.  

 The meanings of some of the command line switches 

are briefly introduced here. ‘-b’ specifies the prefix to use 

for all hyacc output file names.  The default is y.tab.c as in 

Yacc. If ‘-c’ is specified, no parser files (y.tab.c and y.tab.h) 

will be generated. This is used when the user only wants to 

use the -v and -D options to parse the grammar and check 

the y.output log file. ‘-D’ is used with a number from 0 to 15 

(e.g., -D7) to specify the details to be included into the 

y.output log file during the parser generation process. ‘-g’ 

says that a Graphviz input file should be generated. ‘-S’ 

means to apply LR(0) algorithm. ‘-R’ applies LALR(1) 

algorithm. ‘-Oi’ where i = 0 to 3 applies the Knuth canonical 

algorithm and the practical general method with different 

optimizations. ‘-P’ applies the lane-tracing algorithm based 

on the practical general method. ‘-Q’ applies the lane-tracing 

algorithm based on the lane table method. ‘-K’ applies the 

LR(k) algorithm. ‘-m’ shows man page. 

 For more usage of the Hyacc parser generator, 

interested users can refer to the Hyacc usage manual. 

3 Related Work 

 Pager’s practical general method has been 

implemented in some other parser generators. Some 

examples are LR (1979, in Fortran 66, at Lawrence 

Livermore National Laboratory) [13], LRSYS (1985, in 

Pascal, at Lawrence Livermore National Laboratory) [14], 

LALR (1988, in MACRO-11 under RSX-11) [15], Menhir 

(2004, in Caml) [11] and the Python Parsing module (2007, 

in Python) [16]. 

 The lane-tracing algorithm was implemented by Pager 

(1970s, in Assembly under OS 360) [3]. But no other 

available implementation is known. 

 For other LR(1) parser generators, the Muskox parser 

generator (1994) [17] implemented Spector’s LR(1) 

algorithm [18][19]. MSTA (2002) [12] took a splitting 

approach but the detail is unknown. Commercial products 

include Yacc++ (LR(1) was added around 1990, using 

splitting approach loosely based on Spector’s algorithm) 

[20][21] and Dr. Parse (detail unknown) [22]. Most recently 

an IELR(1) algorithm [23][24] was proposed to provide 

LR(1) solution to non-LR(1) grammars with specifications 

to solve conflicts, and the authors implemented this as an 

extension of Bison. 



4 Conclusions 

 In this work we investigated LR(1) parser generation 

algorithms and implemented a parser generator Hyacc, 

which supports LR(0)/LALR(1)/LR(1) and partial LR(k). It 

has been released to the open source community. The usage 

of Hyacc is highly similar to the widely used LALR(1) 

parser generators Yacc and Bison, which makes it easy to 

learn and use. Hyacc is unique in its wide span of algorithms 

coverage, efficiency, portability, usability and availability. 
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