
The Edge-Pushing LR(k) Algorithm

X. Chen
1
, D. Pager

1

1 Department of Information and Computer Science, University of Hawaii at Manoa, Honolulu, HI, USA

Abstract - The original LR(k) parser generation algorithm

of Knuth in 1965 is very expensive in time and space.

Different approaches have been proposed to achieve LR(k)

with better practical performance. This work designed a new

LR(k) algorithm called the edge-pushing algorithm, which is

based on recursively applying the lane-tracing process. The

algorithm has been implemented into the parser generator

Hyacc. Here we first present the background and related

work on LR(k) parser generation, next we introduce the

edge-pushing algorithm’s design and implementation, its

LR(k) parse engine and corresponding storage parsing table.

Relevant issues are discussed. Finally we give some

applicable LR(k) grammar examples.

Keywords: LR(k), Parser Generation, Edge-Pushing, Lane-
Tracing, Algorithm

1 Introduction

 The canonical LR(k) algorithm proposed by Knuth in
1965 [1] is a very powerful parser generation algorithm for
context-free languages. However it is too expensive in time
and space costs to be practical. Subsequent research on
reduced-space LR(1) algorithms, which can reduce the state
space and thus improve the performance of canonical LR(1)
parser generation, were made by researchers such as Pager
[2][3][4] and Spector [5][6]. LR(k) parser generation is in
general much more expensive and complicated than LR(1)
parser generation. Although widely studied on the
theoretical side, very little practical work has been done due
to the performance problem. It would be of value to study
practical LR(k) parser generation algorithms. Here we show
the design and implementation of a LR(k) algorithm called
the edge-pushing algorithm, which is based on the lane-
tracing LR(1) algorithm. The edge-pushing algorithm has
been implemented into the parser generator Hyacc [7][8].

 In this discussion, Greek letters such as α, β, γ, ψ, φ, ω
... represent a string of symbols. ε represents the empty
string. In the context of specifying a grammar, Roman letters
such as A, B, C, ..., a, b, c, ... represent a single symbol; of
these upper case letters represent non-terminal symbols, and
lower case letters represent terminal symbols. In the context
of specifying algorithms or mathematical formula, Roman
letters may have other meanings such as a string, a number,
a state or a set, and are not limited to terminal or non-
terminal symbols. The symbol ┤stands for the end of an

input stream, and Ø stands for the empty set. The concepts
of state, configuration and theads(α, k) used here are
equivalent to “item set”, “item” and FIRSTk(α)
correspondingly in some other literature.

2 Background And Related Work On

LR(k) Parser Generation

 The 1965 paper of Knuth [1] introduced LR(k) parser
generation. After that, a lot of works were done to reduce
performance cost.

 The work of Pager in the 1970s [2][3][4] were about
reduced-space LR(k) parser generation. Pager reported
LR(k) analysis on the grammars of real languages such as
ALGOL for LR(2) and LR(3) [3]. M. Ancona et. al.
published their work on LR(k) parser generation from 1980s
to 1990s [9][10][11][12][13]. They proposed a method [13]
in which non-terminals are not expanded to terminals in
contexts, and expansion is not done until absolutely needed
to resolve inadequacy. This defers the calculation of
FIRSTk(α) until absolutely necessary. They claim savings in
both time and storage space by deploying this method when
trying on several programming language grammars. They
have worked on a LR(k) parser generator for their research,
but no publicly available product was reported. In 1993,
Terence Parr’s PhD thesis “Obtaining practical variants of
LL(k) and LR(k) for k > 1 by splitting the atomic k-tuple”
[14] provided important theoretical implications for working
on multiple lookaheads and claimed close-to-linear
approximation to the exponential problem. The idea is to
break the context k-tuples, which can be applied to both
LL(k) and LR(k). Parr’s ANTLR LL(k) parser generator was
a big success. LL(k) parser generation is considered easier to
work with. Theoretically it is also less powerful than LR(k)
in recognition power. Parr’s PhD thesis proposed that
adding semantic actions to a LR(k) grammar degrades its
recognition power to that of a LL(k) grammar. Based on this
proposition he worked on LL(k) parser generation only.
Josef Grosch worked on a LR(1)/LR(k) parser generator in
1995 [15]. In case of LR(1), it was practical only for small
to medium size grammars, and LR(k) is certainly more
expensive. Bob Buckley worked on a LR(1) parser
generator called Gofer in 1995 [16]. He said it was a long
way to go from being a production software. More recently
in 2005, Karsten Nyblad claimed to have a plan for a LR(k)
implementation [17]. There was no more news so far. Chris
Clark worked on a LALR(k)/LR(1)/LR(k) parser generator

Yacc++ [18][19]. Its LR(1)/LR(k) implementation was
loosely based on Spector’s paper [5][6]. But there was an
infinite loop problem on LR(k). Thus the LR(k) feature of
Yacc++ was only used internally and did not go public.
Ralph Boland once worked on LR(k) [20], but report on his
results was not found. Paul Mann mentioned that Ron
Newman’s Dr. Parse [21] works on LR(k) for k = 2 or
maybe 3. The only claimed successful efficient LR(k)
parser generator is the MSTA parser generator in the
COCOM tool set [22]. The author Vladimir Makarov said it
generates fast LALR(k) and LR(k) grammar parsers with
“acceptable space requirements”.

 To conclude, practical result on LR(k) parser
generation is scarce.

3 LR(k) Parser Generation Based On

Edge-Pushing

 This section discusses practical LR(k) parser
generation based on the edge-pushing algorithm as
implemented in Hyacc.

 The exponential behavior of LR(k) parser generation
comes from two sources: 1) the number of states in the
parsing machine, and 2) the number of context tuples of the
configurations. The reduced-space LR(1) algorithms such as
those by Pager can solve the first problem. The second
problem can be solved following the way of Terence Parr
[14], or as in the edge-pushing algorithm discussed here by
only working on those configurations that actually lead to
reduce/reduce conflicts and ignore the rest. The edge-
pushing algorithm does this by recursively applying the lane-
tracing procedure.

 Three problems need to be solved when extending
lane-tracing to LR(k) in a practical way: 1) LR(k) algorithm.
This part should extend the lane-tracing LR(1) parser
generation algorithm, such that it can be recursively applied
to states where reduce/reduce conflicts cannot be resolved
by available lookaheads. 2) Storage of LR(k) parsing table.
This part should efficiently represent the LR(k) lookaheads
in LR(k) parsing table and work together with the LR(k)
algorithm in 1). 3) LR(k) parse engine. After the LR(k)
parsing table is generated, the Hyacc LR(1) parse engine
should be extended so it can use the LR(k) parsing table for
parsing LR(k) grammars.

3.1 The Edge-Pushing LR(k) algorithm

 For the ease of discussion, we define the terms and
functions below. A final configuration is one where the
marker (the dot) is at the right most position on the right
hand side, e.g., E � E + T ▪. A head configuration is a
configuration at the start of a lane where we stop in lane-

tracing. On the contrary, by tail configuration we mean
those configurations at the end of a lane from which we start
the lane-tracing. Define the function theads(α, k) to return a
set of terminal strings obtained from α. The length of these
strings is k, and this function is potentially exponential on k.

theads(α, k) is the same as FIRSTk(α) in many other
literature.

3.1.1 LR(k) parser generation based on recursive lane-

tracing

 Each time after LR(k) lane-tracing for a certain k, we
need to check if conflicts are resolved, and further trace
LR(k+1) only for states with unresolved reduce/reduce
conflicts. In order to resolve conflicts, we may need to go
back multiple levels. The purpose here is to trace back all
the way until we find relevant contexts of length k that solve
the reduce/reduce conflicts of inadequate states. The word
“relevant” here means we only get contexts that are useful
for resolving conflicts: only for those contexts that cause
conflicts, we trace further. This is needed because the
number of LR(k) contexts can increase exponentially with k.
We also should better cache the computation of LR(k)
theads for more efficient computation of LR(k+1) theads.

 It is possible to do LR(k) lane-tracing on a specific k
for each inadequate state, then increase k and do this again
on all unresolved states. It is also possible to do LR(k) lane-
tracing recursively on one inadequate state, increase k on
this state only until its inadequacy is resolved or found not
resolvable, then start on another inadequate state. For these
two methods, the second may be easier from a practical
point of view, since if we want to take advantage of the
result of LR(k) for LR(k+1), the second method allows us to
remember less intermediate information.

 Below is an intuitive and straightforward solution for
LR(k) lane-tracing. Algorithm 1 Conflicts_Resolved(S, k)
checks if the reduce/reduce conflicts on a state S can be
solved by LR(k) lane-tracing. Algorithm 2

Intuitive_Lane_Tra-cing_LRk(S) achieves LR(k) by calling
Algorithm 1 and increasing the parameter k from 2 to 3, 4,
… until Conflicts_Resolved(S, k) returns true. The problem
of Algorithm 2 is that it always repeats the computation for
each LR(k) context, even for those configurations that do not
have associated conflict. E.g., suppose two reduction
configurations r1 and r2 both have conflicted LR(1) context
{‘a’}. Then for the LR(2) context, r1 has context set {‘ab’,
‘ac’}, r2 has context set {‘ab’, ‘ad’}. Then we only need to
continue with LR(3) on the configurations that generate
conflict ‘ab’. But Algorithm 2 also computes the
configurations that generate ‘ac’ and ‘ad’. To avoid this
problem and achieve more delicate control, we can improve
by only computing the configurations that generate ‘ab’. We
call such a method “edge-pushing” and show it below in a
conceptual example.

 Algorithm 1: Conflicts_Resolved(S, k)

1 foreach final configuration Cf of state S do

2 CS  head configuration of Cf;
3 get LR(k) context of Cs;

4 if all reduce/reduce conflicts are resolved then
5 add context obtained to parsing table;
6 return true;
7 else
8 return false;

Algorithm 2: Intuitive_Lane_Tracing_LRk(S)

1 k  2;
2 repeat

3 resolved  Conflicts_Resolved(S,
k);
4 k  k + 1;
5 until resolved == true

3.1.2 Edge-pushing – a conceptual example

 Below we will show a conceptual description of LR(k)
lane-tracing with edge-pushing.

 Here the starting state is state 10 with a LR(1)
reduce/reduce conflict. Four steps are carried out from
LR(2) to LR(5) to resolve the conflict eventually. In each
graph, the circles with bold edge are at the cutting edge of
lane-tracing. Circle 10 stands for state 10. Circles 3 to 9
actually should mean a head configuration in states 3 to 9,
and here by saying state 3 we actually mean a head
configuration in state 3. z is a local variable associated with
a head configuration, whose value is obtained by adding
together z and k’ of the tail configuration. k’ is the value
used in the calculation of theads(β, k’) for a configuration A
� α • B β. k’ = k - z, where k is the k in LR(k), and z is the
local z. The figures below show a conceptual example of the
calculation of these values, and how LR(k) lane-tracing is
pushed at the cutting edge.

 Fig. 1 shows the initial conflict state obtained by LR(1)
lane-tracing:

Fig. 1. LR(1) state with reduce/reduce conflict.

In Fig. 2, states 8 and 9 are at the cutting edge of lane-
tracing. For state 8, on its right side “r1: {ab, ac}” means that
‘b’ and ‘c’ are the context symbols generated by a
configuration in state 8 for reduction r1. Local z = 0. It is
always 0 for head configurations in LR(1) and LR(2) lane-
tracing. The value of local k’ is obtained by subtracting the
local z from the k in LR(k): k’8 = k - z8 = 2 - 0 = 2. The
meanings of notations are similar for state 9.

Fig. 2. LR(2) states.

 In Fig. 3, states 5, 6 and 7 are at the cutting edge of
LR(3) lane-tracing. The only thing that needs explanation is
the value of z. For state 5, z is obtained by the sum of k’ and
z in its tail configuration in state 8: z5 = k’8 + z8 = 2 + 0 = 2.
Similarly z is obtained this way in states 6 and 7.

Fig. 3. LR(3) states.

 See Fig. 4, in state 5 we get two consecutive context
symbols “dd” by doing theads(β, k’5) calculation where k’5 =
k - z5 = 4 – 2 = 2. In state 7, k’7 = k - z7 = 4 - 2 = 2, theads(β,
k’7) returns ‘d’ whose length is less than 2, so we have to do
lane-tracing here to obtain state 4 as shown. In the head
configuration in state 4 z4 = k’7 + z7 = 2 + 1 = 3, k’4 = k - z4 =
4 - 3 = 1, and we do theads(β, k’4) to obtain context ‘d’.

 In Fig. 5, states 3 and 4 are at the cutting edge of lane-
tracing, and we obtain the values of z and k’ for them in the
same way as before: z3 = z5 + k’5 = 2 + 2 = 4, k’3 = k - z3 = 5
- 4 = 1. z4 = 3 was obtained in the last step, k’4 = k - z4 = 5 -
3 = 2.

Fig. 4. LR(4) states.

Fig. 5. LR(5) states.

 Now, we don’t need to add any context to state 10’s
final configurations, because the LR(k) parsing tables
(LR(1) parsing table, LR(2) parsing table, ..., LR(5) parsing
table) suffice for both storage of contexts as well as conflict
detection.

 LR(k) parsing tables 1 to 5 are the corresponding
LR(1) to LR(5) parsing tables. Symbol Θ means a
reduce/reduce conflict. See section 3.3 for the exact
notations on storage of LR(k) parsing tables. These tables
are created when we do the LR(k) lane-tracing. Whenever a
conflict is found: e.g., when inserting action r2 to a field we
find an r1 action already exists in the same cell, then we
know a conflict occurs, and then we pass the two relevant
configurations to the next round of lane-tracing.

Table 1. LR(1) parsing table.

state / token … a …

…
10 Θ
…

Table 2. LR(2) parsing table.

(state, LR(1) lookahead) / token b c d

(10, a) Θ r1 r2

Table 3. LR(3) parsing table.

(state, LR(2) lookahead) / token d e

(10, b) Θ r1

Table 4. LR(4) parsing table.

(state, LR(3) lookahead) / token d

(10, d) Θ

Table 5. LR(5) parsing table.

(state, LR(4) lookahead) / token e f

(10, d) r1 r2

 When parsing an input string, we follow the LR(1), ...
LR(k) parsing tables to find a match. Suppose during a parse
we are in state 10, and the next few lookaheads of the input
string are “abddf”. The first lookahead symbol ‘a’ gets us a
Θ action which denotes a reduce/reduce conflict, so we take
the second symbol ‘b’ and go to the LR(2) parsing table.
There we find another Θ action so need to take the third
symbol ‘d’ and go to the LR(3) parsing table. This chain of
actions stops at the LR(5) parsing table, where the 5th
lookahead ‘f’ denotes an action ‘r2’, which means to reduce
by rule 2.

3.1.3 The Edge-pushing algorithm

 We summarize the skeleton of the edge-pushing
algorithm below as Algorithm 3.

 There are lots of details involved, but two major
components are lane-tracing and calculation of theads(α, k).
The edge-pushing algorithm uses iteration and avoids
recursion. Two configuration sets are used between
iterations, such that during a round of iteration, we draw an
element from the working set (Set_C), process it and add
new derived configurations to the derived set (Set_C2); then
at the end of the iteration, pass the elements of the derived
set to the working set and start the next iteration. The edge-
pushing algorithm stops when lane-tracing is back to state 0,
line 16 “Σ  lane_tracing(C)” will return an empty set. So
eventually Set_C2, and thus Set_C, becomes an empty set.

Algorithm 3: Edge_Pushing(S)
Input: Inadequate state S

1 Set_C  Ø; Set_C2  Ø
2 k  1;
3 foreach final configuration T of S do

4 T.z  0;
5 Let C be the head configuration of T,
 and X be the context generated by C;
6 Add triplet (C, X, T) to set Set_C;
7 while Set_C ≠ Ø do

8 k  k + 1;

9 foreach (C:A � α • B β, X, T) in Set_C do

10 k’  k - C.z;
11 calculate ψ  theads(β, k’);
12 foreach context string x in ψ do
13 if x.length == k’ then
14 Insert (S, X, last symbol of
 string x, C, T) to Set_C2
 and add to LR(k) parsing table;
15 else if x.length == k’ - 1 then

16 Σ  lane_tracing(C);
 //Σ: set of head configurations
17 foreach configuration σ in Σ do

18 σ.z  C.z + k’;
19 Let m be the generated context
 symbol in σ;
20 Insert(S, X, m, σ, T) to Set_C2
 and add to LR(k) parsing table;
21 Set_C  Set_C2;
22 Set_C2  Ø;

 At the beginning we initialize the variable z of relevant
final configurations to 0, and then obtain the z values for
derived configurations recursively. Each time lane-tracing is
done, we only use the LR(1) theads of the new head
configurations. This is easier. In comparison, in Algorithm 1
when lane-tracing is involved, we may need to go several
rounds of lane-tracing recursively to get all the LR(k)
theads, which is much harder. We do not need to attach any
context to the initial inadequate states’ final configurations,
because here the LR(k) parsing tables can store the LR(k)
context symbols as well as detect possible conflicts. Here
since we only push the cutting edge of lane-tracing, we
avoid recalculating those edges that do not cause conflict.

 Due to the exponential nature of theads(α, k), we
potentially still may have an exponential problem. However,
for the entire parsing machine, the number of inadequate
states is small. Further, those configurations that cause
conflicts for increasing k may be just a portion of all such
initial configurations, i.e., configurations that we should
trace further for LR(k+1) usually are just a small portion of
the configurations that we trace for LR(k). Thus we should
expect a below exponential increase in most cases.

3.1.4 Edge-pushing algorithm on cycle condition

 We have described the edge-pushing algorithm on one
state. Complication is involved when lane-tracing of
different inadequate states come into the same
configurations (e.g. Fig. 6 (a)), or when cycles are involved
in the tracing (e.g. Fig. 6 (b)).

 Using Figure 6 (b) as an example, if LR(k) tracing ends
at state B and cannot resolve the reduce/reduce conflict,
LR(k+1) tracing ends at state C and cannot resolve the
conflict, LR(k+2) tracing ends at state D and still cannot
resolve the conflict, then LR(k+3) tracing will come back to
state B. This forms an infinite cycle: B � C � D � B …

Fig. 6. LR(k) lane-tracing: joint and cycle conditions.

 Then we need to answer two questions: 1) Do we need
to cache a previous computation? 2) What to do with the
parameters k’ and z? For 1), it is obvious that caching a
previous computation has advantages. Once we do cache,
then we also don’t need to worry about 2), since we can
refer to the cache for contexts generated. We do not need to
care about k’ and z, since these are used only if we do the
computation. So every time after lane-tracing and we
obtain a set of head configurations, we search in the cache.
If it already exists in the cache, then we get the contexts
generated from the cache, and also the next round of head
configurations from the cache. The problem of cycles can be
solved by cache this way. The only left issue is cycle
detection: how to avoid tracing down the cycle infinitely.
This will be among the future work.

3.2 Computation of theads(α, k)

 The theads(α, k), i.e., FIRSTk(α) algorithm used in the
edge-pushing algorithm is given by Pager [23]. Compared to
the FIRSTk(α) algorithm of Aho and Ullman [24], which
uses a bottom-up process, this algorithm takes a top-down
approach.

3.3 Storage of LR(k) parsing table

 In Hyacc, for an LR(k) grammar, there is an array of
parsing tables for each of LR(1), LR(2), ..., LR(k). When
resolving conflicts, if the LR(i) parsing table can’t do it, we
consult the LR(i+1) parsing table. This goes on until the
conflict is resolved.

 In the LR(k) parsing table (k ≥ 2), each column
represents a lookahead token as in the LR(1) parsing table.
Each row represents a (state, token) pair, where the token is
a lookahead token that causes reduce/reduce conflict in
LR(k-1) parsing table. By doing this we avoid repeating
lookaheads for LR(1), LR(2), ... LR(K-1) in the LR(k)
parsing table, and can save space.

 The Hyacc parser generator uses the hyaccpar file for
LR(1) parse engine [7]. For the LR(k) extension, Hyacc uses
another parse engine file hyaccpark, which is based on
hyaccpar with extension. Table 6 shows the additional
variable and arrays used to represent the LR(k) parsing
tables besides those for LR(1) in hyaccpark.

 In additional, the LR(1) part of the parsing table should
have this modification: wherever a reduce/reduce conflict
occurs, the previous default reduction number should be
replaced by a special value (Θ) labeling the occurrence of a
reduce/reduce conflict. In the hyaccpark parse engine’s
arrays, this would mean the update of corresponding values
in arrays yyfs[] and yyptblact[].

Table 6. LR(k) parse engine arrays

Array name Explanation
yy_lrk_k The maximum value of k for this LR(k)

grammar.
yy_lrk_rows[] The number of rows in each LR(k) parsing

table.
For each parsing table, there may be multiple
states, and each state may have multiple tokens.

yy_lrk_cols[] Each row starts with two fields for each (state,
token) pair, followed by one entry for each
token.

yy_lrk_r[] The actual values in each LR(k) parsing table.
The first two entries are for the (state, token)
pair.
This is followed by (index, value) pairs, where
index is the index of a token in the yyPTC[]
array, and value is the action for this token:
i) -2 means reduce/reduce conflict, ii) a positive
number means no conflict and is the
corresponding production’s ruleID, iii) -1
labels the end of each row.

yyPTC[] The values of parsing table column tokens.

3.4 LR(k) parse engine

 In Hyacc, the LR(k) parse engine is an extension to the
LR(1) parse engine [7]. In the LR(1) parse engine, the action
depends on the value at parsing table entry (S, L) in the
LR(1) parsing table, where S is a state and L is a lookahead
symbol. For LR(k) the only change to the LR(1) parsing
table is the addition of the Θ symbol, which leads to the
following extension. The LR(k) parse engine extension is
shown in Algorithm 4 below. The while loop eventually
ends when a reduction is found, either the reduction resolves
the reduce/reduce conflict, or the reduction is the end of
LR(k) lane-tracing in state 0 and a default reduction is used.

Algorithm 4: LR(k) parse engine extension.

Input: Current state S;
 LR(1) lookahead L;
 Action A: action(S, L)

1 if A == Θ then
2 k = 2;
3 while true do

4 Lnext  next lookahead;
5 if Lnext == EOF then
6 Report error and exit;
7 else
8 In LR(k) parsing table, find
 entry Anext  ((S, L), Lnext);

9 if Anext == Θ then
10 L  Lnext;
11 k  k + 1;
12 else
14 do reduce;
15 break out of while loop;

3.5 Examples

 The edge-pushing algorithm has been tried and works on
the following grammars. These grammars are often used as
examples in LR(k) discussion.

LR(k) grammar G1: S � a A D a | b A D b | a B D b | b B
D a, A � a, B � a, D � cn. Here k depends on the value of
n: k = n + 1. cn is the concatenation of n letters ‘c’.

LR(3) grammar G2: S � a A D a | b A D b | a A D b | b C

E, A � a, B � a, D � e d, C � B e, E � d a

LR(2) grammar G3: S � a A a | b A b | a B b | b B a, A �

C a, B � D a, C � a, D � a

LR(3) grammar G4: S � a A a a | b A a b | a B a b | b B a

a, A � C a, B � D a, C � a, D � a

4 Conclusions

 We have presented a new LR(k) parser generation
algorithm called the edge-pushing algorithm, which is based
on the lane-tracing process, recursively traces back on
relevant configurations to obtain more contexts to resolve
reduce/reduce conflicts. The edge-pushing algorithm, its
corresponding LR(k) storage arrays and parse engine have
all been designed and implemented into the open source
parser generator Hyacc. The edge-pushing algorithm so far
works on LR(k) grammars where lane-tracing upon
increasing k does not form a cycle.

5 References

[1] Donald E. Knuth. On the translation of languages from
left to right. Information and Control, 8(6):607 – 639, 1965.

[2] David Pager. The lane tracing algorithm for
constructing LR(k) parsers. In Proceedings of the fifth
annual ACM symposium on Theory of computing, pages
172 – 181, Austin, Texas, United States, 1973.

[3] David Pager. The lane-tracing algorithm for
constructing LR(k) parsers and ways of enhancing its
efficiency. Information Sciences, 12:19 – 42, 1977.

[4] David Pager. A practical general method for
constructing LR(k) parsers. Acta Informatica, 7:249 – 268,
1977.

[5] David Spector. Full LR(1) parser generation. ACM
SIGPLAN Notices, pages 58 – 66, 1981.

[6] David Spector. Efficient full LR(1) parser generation.
ACM SIGPLAN Notices, 23(12):143 – 150, 1988.

[7] Xin Chen. Measuring and Extending LR(1) Parser
Generation. PhD thesis, University of Hawaii, August 2009.

[8] Xin Chen. LR(1) Parser Generator Hyacc, January
2008. http://hyacc.sourceforge.net.

[9] Massimo Ancona, Alessandro Paone. Table merging
by compatible partitions for LR parsers is NP-complete.
Elektronische Informationsverarbeitung und Kybernetik,
30(3):123 – 134, 1994.

[10] Massimo Ancona, Vittoria Gianuzzi. A new method for
implementing LR(k) tables. Inf. Process. Lett., 13(4/5):171 –
176, 1981.

[11] Massimo Ancona, Claudia Fassino, Vittoria Gianuzzi.
Optimization of LR(k) “Reduced Parsers”. Inf. Process.
Lett., 41(1):13 – 20, 1992.

[12] Massimo Ancona, Gabriella Dodero, Vittoria Gianuzzi.
Building collections of LR(k) items with partial expansion
of lookahead strings. SIGPLAN Notices, 17(5):24 – 28,
1982.

[13] Massimo Ancona, Gabriella Dodero, Vittoria Gianuzzi,
M. Morgavi. Efficient construction of LR(k) states and
tables. ACM Trans. Program. Lang. Syst., 13(1):15 – 178,
1991.

[14] Terence Parr. Obtaining practical variants of LL(k) and
LR(k) for k > 1 by splitting the atomic k-tuple. PhD thesis,
Purdue University, August 1993.

[15] Josef Grosch, 1995.
http://compilers.iecc.com/comparch/article/95-04-179

[16] Bob Buckley, 1995.
http://compilers.iecc.com/comparch/article/95-05-087

[17] Karsten Nyblad, 2005.
http://compilers.iecc.com/comparch/article/05-03-117

[18] Chris Clark. Yacc++ historical notes, 2005.
http://compilers.iecc.com/comparch/article/05-06-124

[19] Chris Clark. More Yacc++ historical notes, 2000.
http://compilers.iecc.com/comparch/article/00-02-142

[20] Ralph Boland, 1997.
http://compilers.iecc.com/comparch/article/97-11-011

[21] Parser Generator Dr. Parse.
http://www.downloadatoz.com/software-
development_directory/dr-parse

[22] Vladimir Makarov. Toolset COCOM & scripting
language DINO, 2002.
http://sourceforge.net/projects/cocom.

[23] David Pager. Evaluating Terminal Heads Of Length K.
Technical Report No. ICS2009-06-03, University of Hawaii,
Information and Computer Sciences Department, 2008.
http://www.ics.hawaii.edu/research/tech-
reports/terminals.pdf/view.

[24] Alfred V. Aho, Jeffrey D. Ullman. The Theory of
Parsing, Translation and Compiling, Vol. 1, Parsing.
Prentice-Hall, Englewood Cliffs, N.J, 1972.

