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Abstract - The original LR(k) parser generation algorithm 

of Knuth in 1965 is very expensive in time and space. 

Different approaches have been proposed to achieve LR(k) 

with better practical performance. This work designed a new 

LR(k) algorithm called the edge-pushing algorithm, which is 

based on recursively applying the lane-tracing process. The 

algorithm has been implemented into the parser generator 

Hyacc. Here we first present the background and related 

work on LR(k) parser generation, next we introduce the 

edge-pushing algorithm’s design and implementation, its 

LR(k) parse engine and corresponding storage parsing table. 

Relevant issues are discussed. Finally we give some 

applicable LR(k) grammar examples. 
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1 Introduction 

  The canonical LR(k) algorithm proposed by Knuth in 
1965 [1] is a very powerful parser generation algorithm for 
context-free languages. However it is too expensive in time 
and space costs to be practical. Subsequent research on 
reduced-space LR(1) algorithms, which can reduce the state 
space and thus improve the performance of canonical LR(1) 
parser generation, were made by researchers such as Pager 
[2][3][4] and Spector [5][6]. LR(k) parser generation is in 
general much more expensive and complicated than LR(1) 
parser generation. Although widely studied on the 
theoretical side, very little practical work has been done due 
to the performance problem. It would be of value to study 
practical LR(k) parser generation algorithms. Here we show 
the design and implementation of a LR(k) algorithm called 
the edge-pushing algorithm, which is based on the lane-
tracing LR(1) algorithm. The edge-pushing algorithm has 
been implemented into the parser generator Hyacc [7][8]. 

 In this discussion, Greek letters such as α, β, γ, ψ, φ, ω 
... represent a string of symbols. ε represents the empty 
string. In the context of specifying a grammar, Roman letters 
such as A, B, C, ..., a, b, c, ... represent a single symbol; of 
these upper case letters represent non-terminal symbols, and 
lower case letters represent terminal symbols. In the context 
of specifying algorithms or mathematical formula, Roman 
letters may have other meanings such as a string, a number, 
a state or a set, and are not limited to terminal or non-
terminal symbols. The symbol ┤stands for the end of an 

input stream, and Ø stands for the empty set. The concepts 
of state, configuration and theads(α, k) used here are 
equivalent to “item set”, “item” and FIRSTk(α) 
correspondingly in some other literature.  

2 Background And Related Work On 

LR(k) Parser Generation 

 The 1965 paper of Knuth [1] introduced LR(k) parser 
generation. After that, a lot of works were done to reduce 
performance cost.  

 The work of Pager in the 1970s [2][3][4] were about 
reduced-space LR(k) parser generation. Pager reported 
LR(k) analysis on the grammars of real languages such as 
ALGOL for LR(2) and LR(3) [3].  M. Ancona et. al. 
published their work on LR(k) parser generation from 1980s 
to 1990s [9][10][11][12][13]. They proposed a method [13] 
in which non-terminals are not expanded to terminals in 
contexts, and expansion is not done until absolutely needed 
to resolve inadequacy. This defers the calculation of 
FIRSTk(α) until absolutely necessary. They claim savings in 
both time and storage space by deploying this method when 
trying on several programming language grammars. They 
have worked on a LR(k) parser generator for their research, 
but no publicly available product was reported.  In 1993, 
Terence Parr’s PhD thesis “Obtaining practical variants of 
LL(k) and LR(k) for k > 1 by splitting the atomic k-tuple” 
[14] provided important theoretical implications for working 
on multiple lookaheads and claimed close-to-linear 
approximation to the exponential problem. The idea is to 
break the context k-tuples, which can be applied to both 
LL(k) and LR(k). Parr’s ANTLR LL(k) parser generator was 
a big success. LL(k) parser generation is considered easier to 
work with. Theoretically it is also less powerful than LR(k) 
in recognition power. Parr’s PhD thesis proposed that 
adding semantic actions to a LR(k) grammar degrades its 
recognition power to that of a LL(k) grammar. Based on this 
proposition he worked on LL(k) parser generation only.  
Josef Grosch worked on a LR(1)/LR(k) parser generator in 
1995 [15]. In case of LR(1), it was practical only for small 
to medium size grammars, and LR(k) is certainly more 
expensive.  Bob Buckley worked on a LR(1) parser 
generator called Gofer in 1995 [16]. He said it was a long 
way to go from being a production software.  More recently 
in 2005, Karsten Nyblad claimed to have a plan for a LR(k) 
implementation [17]. There was no more news so far.  Chris 
Clark worked on a LALR(k)/LR(1)/LR(k) parser generator 



Yacc++ [18][19]. Its LR(1)/LR(k) implementation was 
loosely based on Spector’s paper [5][6]. But there was an 
infinite loop problem on LR(k). Thus the LR(k) feature of 
Yacc++ was only used internally and did not go public.  
Ralph Boland once worked on LR(k) [20], but report on his 
results was not found.  Paul Mann mentioned that Ron 
Newman’s Dr. Parse [21] works on LR(k) for k = 2 or 
maybe 3.  The only claimed successful efficient LR(k) 
parser generator is the MSTA parser generator in the 
COCOM tool set [22]. The author Vladimir Makarov said it 
generates fast LALR(k) and LR(k) grammar parsers with 
“acceptable space requirements”.  

 To conclude, practical result on LR(k) parser 
generation is scarce. 

3 LR(k) Parser Generation Based On 

Edge-Pushing 

 
 This section discusses practical LR(k) parser 
generation based on the edge-pushing algorithm as 
implemented in Hyacc. 

 The exponential behavior of LR(k) parser generation 
comes from two sources: 1) the number of states in the 
parsing machine, and 2) the number of context tuples of the 
configurations. The reduced-space LR(1) algorithms such as 
those by Pager can solve the first problem. The second 
problem can be solved following the way of Terence Parr 
[14], or as in the edge-pushing algorithm discussed here by 
only working on those configurations that actually lead to 
reduce/reduce conflicts and ignore the rest. The edge-
pushing algorithm does this by recursively applying the lane-
tracing procedure. 

 Three problems need to be solved when extending 
lane-tracing to LR(k) in a practical way: 1) LR(k) algorithm. 
This part should extend the lane-tracing LR(1) parser 
generation algorithm, such that it can be recursively applied 
to states where reduce/reduce conflicts cannot be resolved 
by available lookaheads. 2) Storage of LR(k) parsing table. 
This part should efficiently represent the LR(k) lookaheads 
in LR(k) parsing table and work together with the LR(k) 
algorithm in 1). 3) LR(k) parse engine. After the LR(k) 
parsing table is generated, the Hyacc LR(1) parse engine 
should be extended so it can use the LR(k) parsing table for 
parsing LR(k) grammars. 

3.1 The Edge-Pushing LR(k) algorithm 

 For the ease of discussion, we define the terms and 
functions below. A final configuration is one where the 
marker (the dot) is at the right most position on the right 
hand side, e.g., E � E + T ▪. A head configuration is a 
configuration at the start of a lane where we stop in lane-

tracing. On the contrary, by tail configuration we mean 
those configurations at the end of a lane from which we start 
the lane-tracing.  Define the function theads(α, k) to return a 
set of terminal strings obtained from α. The length of these 
strings is k, and this function is potentially exponential on k. 

theads(α, k) is the same as FIRSTk(α) in many other 
literature. 

3.1.1 LR(k) parser generation based on recursive lane-

tracing 

 Each time after LR(k) lane-tracing for a certain k, we 
need to check if conflicts are resolved, and further trace 
LR(k+1) only for states with unresolved reduce/reduce 
conflicts. In order to resolve conflicts, we may need to go 
back multiple levels. The purpose here is to trace back all 
the way until we find relevant contexts of length k that solve 
the reduce/reduce conflicts of inadequate states. The word 
“relevant” here means we only get contexts that are useful 
for resolving conflicts: only for those contexts that cause 
conflicts, we trace further. This is needed because the 
number of LR(k) contexts can increase exponentially with k. 
We also should better cache the computation of LR(k) 
theads for more efficient computation of LR(k+1) theads. 

 It is possible to do LR(k) lane-tracing on a specific k 
for each inadequate state, then increase k and do this again 
on all unresolved states. It is also possible to do LR(k) lane-
tracing recursively on one inadequate state, increase k on 
this state only until its inadequacy is resolved or found not 
resolvable, then start on another inadequate state. For these 
two methods, the second may be easier from a practical 
point of view, since if we want to take advantage of the 
result of LR(k) for LR(k+1), the second method allows us to 
remember less intermediate information. 

 Below is an intuitive and straightforward solution for 
LR(k) lane-tracing. Algorithm 1 Conflicts_Resolved(S, k) 
checks if the reduce/reduce conflicts on a state S can be 
solved by LR(k) lane-tracing. Algorithm 2 

Intuitive_Lane_Tra-cing_LRk(S) achieves LR(k) by calling 
Algorithm 1 and increasing the parameter k from 2 to 3, 4, 
… until Conflicts_Resolved(S, k) returns true.  The problem 
of Algorithm 2 is that it always repeats the computation for 
each LR(k) context, even for those configurations that do not 
have associated conflict. E.g., suppose two reduction 
configurations r1 and r2 both have conflicted LR(1) context 
{‘a’}. Then for the LR(2) context, r1 has context set {‘ab’, 
‘ac’}, r2 has context set {‘ab’, ‘ad’}. Then we only need to 
continue with LR(3) on the configurations that generate 
conflict ‘ab’. But Algorithm 2 also computes the 
configurations that generate ‘ac’ and ‘ad’. To avoid this 
problem and achieve more delicate control, we can improve 
by only computing the configurations that generate ‘ab’. We 
call such a method “edge-pushing” and show it below in a 
conceptual example. 



 Algorithm 1: Conflicts_Resolved(S, k) 

1 foreach final configuration Cf of state S do  

2     CS  head configuration of Cf; 
3     get LR(k) context of Cs; 

4 if all reduce/reduce conflicts are resolved then  
5     add context obtained to parsing table; 
6     return true; 
7 else  
8     return false; 

 
Algorithm 2: Intuitive_Lane_Tracing_LRk(S) 

1 k  2; 
2 repeat 

3     resolved  Conflicts_Resolved(S, 
k); 
4     k  k + 1; 
5 until resolved == true 

 

3.1.2 Edge-pushing – a conceptual example 

 Below we will show a conceptual description of LR(k) 
lane-tracing with edge-pushing.  

 Here the starting state is state 10 with a LR(1) 
reduce/reduce conflict. Four steps are carried out from 
LR(2) to LR(5) to resolve the conflict eventually. In each 
graph, the circles with bold edge are at the cutting edge of 
lane-tracing. Circle 10 stands for state 10. Circles 3 to 9 
actually should mean a head configuration in states 3 to 9, 
and here by saying state 3 we actually mean a head 
configuration in state 3. z is a local variable associated with 
a head configuration, whose value is obtained by adding 
together z and k’ of the tail configuration. k’ is the value 
used in the calculation of theads(β, k’) for a configuration A 
� α • B β. k’ = k - z, where k is the k in LR(k), and z is the 
local z. The figures below show a conceptual example of the 
calculation of these values, and how LR(k) lane-tracing is 
pushed at the cutting edge.  

 Fig. 1 shows the initial conflict state obtained by LR(1) 
lane-tracing: 

 
 

Fig. 1. LR(1) state with reduce/reduce conflict. 
 

 
 

In Fig. 2, states 8 and 9 are at the cutting edge of lane-
tracing. For state 8, on its right side “r1: {ab, ac}” means that 
‘b’ and ‘c’ are the context symbols generated by a 
configuration in state 8 for reduction r1. Local z = 0. It is 
always 0 for head configurations in LR(1) and LR(2) lane-
tracing. The value of local k’ is obtained by subtracting the 
local z from the k in LR(k): k’8 = k - z8 = 2 - 0 = 2. The 
meanings of notations are similar for state 9. 

 

 
 

Fig. 2. LR(2) states. 
 

 In Fig. 3, states 5, 6 and 7 are at the cutting edge of 
LR(3) lane-tracing. The only thing that needs explanation is 
the value of z. For state 5, z is obtained by the sum of k’ and 
z in its tail configuration in state 8: z5 = k’8 + z8 = 2 + 0 = 2. 
Similarly z is obtained this way in states 6 and 7. 

 

 
 

Fig. 3. LR(3) states. 
 

 See Fig. 4, in state 5 we get two consecutive context 
symbols “dd” by doing theads(β, k’5) calculation where k’5 = 
k - z5 = 4 – 2 = 2. In state 7, k’7 = k - z7 = 4 - 2 = 2, theads(β, 
k’7) returns ‘d’ whose length is less than 2, so we have to do 
lane-tracing here to obtain state 4 as shown. In the head 
configuration in state 4 z4 = k’7 + z7 = 2 + 1 = 3, k’4 = k - z4 = 
4 - 3 = 1, and we do theads(β, k’4) to obtain context ‘d’. 

 In Fig. 5, states 3 and 4 are at the cutting edge of lane-
tracing, and we obtain the values of z and k’ for them in the 
same way as before: z3 = z5 + k’5 = 2 + 2 = 4, k’3 = k - z3 = 5 
- 4 = 1. z4 = 3 was obtained in the last step, k’4 = k - z4 = 5 - 
3 = 2. 



 
 

Fig. 4. LR(4) states. 
  

 
 

Fig. 5. LR(5) states. 
 

 Now, we don’t need to add any context to state 10’s 
final configurations, because the LR(k) parsing tables 
(LR(1) parsing table, LR(2) parsing table, ..., LR(5) parsing 
table) suffice for both storage of contexts as well as conflict 
detection.  

 LR(k) parsing tables 1 to 5 are the corresponding 
LR(1) to LR(5) parsing tables. Symbol Θ means a 
reduce/reduce conflict. See section 3.3 for the exact 
notations on storage of LR(k) parsing tables. These tables 
are created when we do the LR(k) lane-tracing. Whenever a 
conflict is found: e.g., when inserting action r2 to a field we 
find an r1 action already exists in the same cell, then we 
know a conflict occurs, and then we pass the two relevant 
configurations to the next round of lane-tracing. 

Table 1.  LR(1) parsing table. 
 

state / token … a … 
 

…    
10  Θ  
…    

Table 2.  LR(2) parsing table.  

(state, LR(1) lookahead) / token b c d 
 

(10, a) Θ r1 r2 

Table 3.  LR(3) parsing table.  

(state, LR(2) lookahead) / token d e 
 

(10, b) Θ r1 
 

Table 4. LR(4) parsing table. 
 

(state, LR(3) lookahead) / token d 
 

(10, d) Θ 
 

Table 5. LR(5) parsing table. 
 

(state, LR(4) lookahead) / token e f 
 

(10, d) r1 r2 
 
 When parsing an input string, we follow the LR(1), ... 
LR(k) parsing tables to find a match. Suppose during a parse 
we are in state 10, and the next few lookaheads of the input 
string are “abddf”. The first lookahead symbol ‘a’ gets us a 
Θ action which denotes a reduce/reduce conflict, so we take 
the second symbol ‘b’ and go to the LR(2) parsing table. 
There we find another Θ action so need to take the third 
symbol ‘d’ and go to the LR(3) parsing table. This chain of 
actions stops at the LR(5) parsing table, where the 5th 
lookahead ‘f’ denotes an action ‘r2’, which means to reduce 
by rule 2. 

3.1.3 The Edge-pushing algorithm 

 We summarize the skeleton of the edge-pushing 
algorithm below as Algorithm 3.  

 There are lots of details involved, but two major 
components are lane-tracing and calculation of theads(α, k). 
The edge-pushing algorithm uses iteration and avoids 
recursion. Two configuration sets are used between 
iterations, such that during a round of iteration, we draw an 
element from the working set (Set_C), process it and add 
new derived configurations to the derived set (Set_C2); then 
at the end of the iteration, pass the elements of the derived 
set to the working set and start the next iteration. The edge-
pushing algorithm stops when lane-tracing is back to state 0, 
line 16 “Σ  lane_tracing(C)” will return an empty set. So 
eventually Set_C2, and thus Set_C, becomes an empty set. 



Algorithm 3: Edge_Pushing(S) 
Input: Inadequate state S 
 
1  Set_C  Ø; Set_C2  Ø  
2  k  1; 
3  foreach final configuration T of S do 

4     T.z  0; 
5     Let C be the head configuration of T, 
        and X be the context generated by C; 
6     Add triplet (C, X, T) to set Set_C; 
7  while Set_C ≠ Ø do 

8     k  k + 1; 

9     foreach (C:A � α • B β, X, T) in Set_C do 

10      k’  k - C.z; 
11      calculate ψ  theads(β, k’); 
12      foreach context string x in ψ do 
13        if x.length == k’ then 
14          Insert (S, X, last symbol of 
              string x, C, T) to Set_C2  
              and add to LR(k) parsing table; 
15        else if x.length == k’ - 1 then 

16          Σ  lane_tracing(C);  
            //Σ: set of head configurations 
17          foreach configuration σ in Σ do 

18            σ.z  C.z + k’; 
19            Let m be the generated context 
                symbol in σ; 
20            Insert(S, X, m, σ, T) to Set_C2 
              and add to LR(k) parsing table; 
21    Set_C  Set_C2; 
22    Set_C2  Ø; 

 
 At the beginning we initialize the variable z of relevant 
final configurations to 0, and then obtain the z values for 
derived configurations recursively. Each time lane-tracing is 
done, we only use the LR(1) theads of the new head 
configurations. This is easier. In comparison, in Algorithm 1 
when lane-tracing is involved, we may need to go several 
rounds of lane-tracing recursively to get all the LR(k) 
theads, which is much harder. We do not need to attach any 
context to the initial inadequate states’ final configurations, 
because here the LR(k) parsing tables can store the LR(k) 
context symbols as well as detect possible conflicts. Here 
since we only push the cutting edge of lane-tracing, we 
avoid recalculating those edges that do not cause conflict. 

 Due to the exponential nature of theads(α, k), we 
potentially still may have an exponential problem. However, 
for the entire parsing machine, the number of inadequate 
states is small. Further, those configurations that cause 
conflicts for increasing k may be just a portion of all such 
initial configurations, i.e., configurations that we should 
trace further for LR(k+1) usually are just a small portion of 
the configurations that we trace for LR(k). Thus we should 
expect a below exponential increase in most cases. 

 

3.1.4 Edge-pushing algorithm on cycle condition 

 We have described the edge-pushing algorithm on one 
state. Complication is involved when lane-tracing of 
different inadequate states come into the same 
configurations (e.g. Fig. 6 (a)), or when cycles are involved 
in the tracing (e.g. Fig. 6 (b)). 

 Using Figure 6 (b) as an example, if LR(k) tracing ends 
at state B and cannot resolve the reduce/reduce conflict, 
LR(k+1) tracing ends at state C and cannot resolve the 
conflict, LR(k+2) tracing ends at state D and still cannot 
resolve the conflict, then LR(k+3) tracing will come back to 
state B. This forms an infinite cycle: B � C � D � B … 

 

Fig. 6. LR(k) lane-tracing: joint and cycle conditions. 

 Then we need to answer two questions: 1) Do we need 
to cache a previous computation? 2) What to do with the 
parameters k’ and z?  For 1), it is obvious that caching a 
previous computation has advantages. Once we do cache, 
then we also don’t need to worry about 2), since we can 
refer to the cache for contexts generated. We do not need to 
care about k’ and z, since these are used only if we do the 
computation. So every time after lane-tracing and we 
obtain a set of head configurations, we search in the cache. 
If it already exists in the cache, then we get the contexts 
generated from the cache, and also the next round of head 
configurations from the cache. The problem of cycles can be 
solved by cache this way. The only left issue is cycle 
detection: how to avoid tracing down the cycle infinitely. 
This will be among the future work. 

3.2 Computation of theads(α, k) 

 The theads(α, k), i.e., FIRSTk(α) algorithm used in the 
edge-pushing algorithm is given by Pager [23]. Compared to 
the FIRSTk(α) algorithm of Aho and Ullman [24], which 
uses a bottom-up process, this algorithm takes a top-down 
approach. 

 



3.3 Storage of LR(k) parsing table 

 In Hyacc, for an LR(k) grammar, there is an array of 
parsing tables for each of LR(1), LR(2), ..., LR(k). When 
resolving conflicts, if the LR(i) parsing table can’t do it, we 
consult the LR(i+1) parsing table. This goes on until the 
conflict is resolved. 

 In the LR(k) parsing table (k ≥ 2), each column 
represents a lookahead token as in the LR(1) parsing table. 
Each row represents a (state, token) pair, where the token is 
a lookahead token that causes reduce/reduce conflict in 
LR(k-1) parsing table. By doing this we avoid repeating 
lookaheads for LR(1), LR(2), ... LR(K-1) in the LR(k) 
parsing table, and can save space.  

 The Hyacc parser generator uses the hyaccpar file for 
LR(1) parse engine [7]. For the LR(k) extension, Hyacc uses 
another parse engine file hyaccpark, which is based on 
hyaccpar with extension. Table 6 shows the additional 
variable and arrays used to represent the LR(k) parsing 
tables besides those for LR(1) in hyaccpark. 

 In additional, the LR(1) part of the parsing table should 
have this modification: wherever a reduce/reduce conflict 
occurs, the previous default reduction number should be 
replaced by a special value (Θ) labeling the occurrence of a 
reduce/reduce conflict. In the hyaccpark parse engine’s 
arrays, this would mean the update of corresponding values 
in arrays yyfs[] and yyptblact[]. 

Table 6.  LR(k) parse engine arrays 

Array name Explanation 
yy_lrk_k The maximum value of k for this LR(k) 

grammar. 
yy_lrk_rows[] The number of rows in each LR(k) parsing 

table. 
For each parsing table, there may be multiple 
states, and each state may have multiple tokens. 

yy_lrk_cols[] Each row starts with two fields for each (state, 
token) pair, followed by one entry for each 
token. 

yy_lrk_r[] The actual values in each LR(k) parsing table. 
The first two entries are for the (state, token) 
pair. 
This is followed by (index, value) pairs, where 
index is the index of a token in the yyPTC[] 
array, and value is the action for this token: 
i) -2 means reduce/reduce conflict, ii) a positive 
number means no conflict and is the 
corresponding production’s ruleID, iii) -1 
labels the end of each row. 

yyPTC[] The values of parsing table column tokens. 
 

3.4 LR(k) parse engine 

 In Hyacc, the LR(k) parse engine is an extension to the 
LR(1) parse engine [7]. In the LR(1) parse engine, the action 
depends on the value at parsing table entry (S, L) in the 
LR(1) parsing table, where S is a state and L is a lookahead 
symbol. For LR(k) the only change to the LR(1) parsing 
table is the addition of the Θ symbol, which leads to the 
following extension. The LR(k) parse engine extension is 
shown in Algorithm 4 below. The while loop eventually 
ends when a reduction is found, either the reduction resolves 
the reduce/reduce conflict, or the reduction is the end of 
LR(k) lane-tracing in state 0 and a default reduction is used. 

Algorithm 4: LR(k) parse engine extension. 

Input: Current state S;  
       LR(1) lookahead L;  
       Action A: action(S, L) 
 

1 if A == Θ then 
2     k = 2; 
3     while true do 

4         Lnext  next lookahead; 
5         if Lnext == EOF then 
6             Report error and exit;  
7         else 
8             In LR(k) parsing table, find 
                entry Anext  ((S, L), Lnext); 

9             if Anext == Θ then 
10                L  Lnext; 
11                k  k + 1; 
12            else 
14                do reduce; 
15                break out of while loop; 

  

3.5 Examples 

 The edge-pushing algorithm has been tried and works on 
the following grammars. These grammars are often used as 
examples in LR(k) discussion. 
 

LR(k) grammar G1: S � a A D a | b A D b | a B D b | b B 
D a, A � a, B � a, D � cn. Here k depends on the value of 
n: k = n + 1. cn is the concatenation of n letters ‘c’. 

 
LR(3) grammar G2: S � a A D a | b A D b | a A D b | b C 

E, A � a, B � a, D � e d, C � B e, E � d a 
 
LR(2) grammar G3: S � a A a | b A b | a B b | b B a, A � 

C a, B � D a, C � a, D � a 
 
LR(3) grammar G4: S � a A a a | b A a b | a B a b | b B a 

a, A � C a, B � D a, C � a, D � a 
 

 



4 Conclusions 

 We have presented a new LR(k) parser generation 
algorithm called the edge-pushing algorithm, which is based 
on the lane-tracing process, recursively traces back on 
relevant configurations to obtain more contexts to resolve 
reduce/reduce conflicts. The edge-pushing algorithm, its 
corresponding LR(k) storage arrays and parse engine have 
all been designed and implemented into the open source 
parser generator Hyacc. The edge-pushing algorithm so far 
works on LR(k) grammars where lane-tracing upon 
increasing k does not form a cycle. 
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