

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

APPLC’13 February 23, 2013, Shenzhen, Guangdong, China.

A New Algorithm To

Evaluate Terminal Heads Of Length K

David Pager

Department of Information and Computer Science

University of Hawaii at Manoa

pagerd@hawaii.rr.com

Xin Chen

Department of Information and Computer Science

University of Hawaii at Manoa

chenx@hawaii.edu

Abstract

This paper presents a new FIRSTk(α) algorithm for finding

the terminal heads of length k of a given string in a context-

free grammar, which is an alternative to the previous meth-

od of Aho and Ullman. Performance study shows the new

algorithm in general has better performance, which can be

considerable under some scenarios, such as when the input

string α is long. The algorithm can be applied in situations

such as LL(k) and LR(k) parser generation, and has been

actually implemented in a LR(k) parser generator.

Categories and Subject Descriptors D.3.4 [Program-

ming Languages]: Processors – translator writing systems

and compiler generators. F.4.2 [Mathematical Logic and

Formal Languages]: Grammars and Other Rewriting Sys-

tems – parsing.

General Terms Algorithms, Languages, Theory.

Keywords FIRSTk(α); THEADk(α); Terminal heads;

LR(k)

1. Introduction

1.1 Overview

The algorithm to evaluate the terminal heads of length k of

a given string in a context-free grammar, often denoted as

FIRSTk(α), has important applications in the computation

of LALR, LL and LR parser generation algorithms.

The algorithm when k = 1 is applied widely, which is

the simple case and can satisfy the design needs of a large

proportion of programming languages in use today. Exam-

ples are LALR(1) parser generators such as Yacc and Bison

[7][8][9], as well as in LL(1) and LR(1) parser generators.

The case of k > 1 is more complex and rare, however it

is equally important since LALR(k), LL(k) and LR(k) are

of wide interests in theoretical research, and has typical

uses in practice too. One example is LL(k) parser generator

ANTLR [5][6]. Other examples include language transla-

tion and natural language processing. For example, in Ital-

ian, genders are assigned to noun, verb and adjective. The

English sentence “The <adjective> student is a <adjective>

<person>” can derive into masculine form “Lo studente

Italiano é un uomo alto” or feminine form “La studentesse

Italian é una donna alta”. The Italian grammar involved

here is LR(k) where k > 1.

Here are two examples on the calculation of FIRSTk(α).

Example 1. Given grammar S � NM, N � st, M � bc.

We want to find FIRSTk(α) for string α = NM. This is a

trivial case, we can just plug N and M into NM to obtain α

= stbc. Calculation of FIRSTk(α) is easy: FIRST1(α) = {s},

FIRST2(α) = {st}, FIRST3(α) = {stb}, FIRST4(α) = {stbc}.

Example 2. Given grammar S � NML, where N � Ns |

ε, M � Mt | ε, L � bc. Here ε is the empty string. We want

to find FIRSTk(α) for string α = NML. Then actually N =

s*, and M = t*, and α = s*t*bc. FIRST1(α) = {s, t, b},

FIRST2(α) = {ss, st, sb, tt, tb, bc}, FIRST3(α) = {sss, sst,

ssb, stt, stb, sbc, ttt, ttb, tbc}, FIRST4(α) = {ssss, ssst, sssb,

sstt, sstb, ssbc, sttt, sttb, stbc, tttt, tttb, ttbc}.

In this paper we present a new algorithm, which we call

THEADk(α), to evaluate the terminal heads of length k of a

given string in a context-free grammar. It is an alternative

to the FIRSTk(α) algorithm of Aho and Ullman [1], and

takes a very different approach. In this paper, we will pre-

sent the algorithm, give examples, compare to the method

of Aho and Ullman, and discuss other related issues.

Since FIRSTk(α) is a fundamental algorithm that works

as a basic building block in compiler theory and practice,

its improvement should have wide impact.

1.2 Terminology

We define the following terms for the discussion:

An alphabet is a set of symbols, where a symbol is a

non-divisible basic element of the alphabet.

A sequence of symbols concatenated together is called a

string. We represent the length of a string s as |s|.

A grammar for a language L is defined as a 4-tuple G =

(N, Σ, P, S). Here N is a set of non-terminal symbols, Σ is a

set of terminal symbols disjoint from the set N, P is a set of

productions, and S is the start symbol from which the pro-

duction rules originate from.

A terminal symbol appears only on the right side of pro-

ductions. A non-terminal symbol can appear on either the

left or right side of productions.

A k-head of a string S is a string which is made of the

first k symbols of S, or the first k symbols of any string

that can derive from S.

A k-terminal head or k-thead of a string S is a k-head of

S which is made up of terminal strings only.

A string is said to vanish if it can derive the empty

string.

We use upper case Roman letters A, B, C, … to repre-

sent non-terminals, lower case Roman letters a, b, c, … to

represent terminals, and Greek letters α, β, γ, … to repre-

sent strings. An empty string is represented by ε.

Example 3. Given grammar G1:

X � X Y | a

Y � b | ε

Here a and b are terminal symbols because they appear

only on the right side of the productions of G1. X and Y are

non-terminal symbols because they can appear on the left

side of the productions of G1.

Y vanishes because it can derive the empty string. The

shortest string X can derive is a, therefore it does not vanish

because it cannot derive the empty string.

Given string α = XY, its 1-head can be X or a, and its 2-

head can be XY, XX, aY, Xb, ab or aa. Its 1-thead is a, and

its 2-thead can be aa or ab.

1.3 Related Work

A survey of previous work on the calculation of FIRSTk(α)

gives the following literature.

1.3.1 Early work

The work of DeRemer and Pennello [3] and Kristensen and

Madsen [4] are examples of early discussions on the calcu-

lation of FIRSTk(α), which are typically vague and impre-

cise.

The work of Kristensen and Madsen [4] on “Methods

for computing LALR(k) lookahead” discussed computing

FIRSTk for finding lookahead strings, which is needed by

their LALR(k) algorithm. Their method is based on simu-

lating all steps involved in parsing starting from a relevant

state in a LR(0) machine. Given an example of calculating

LALRk for [A � ● α], their method wants to obtain the

sets U {FIRSTk(ψi) | i = 1,2, …, n} for all items [Bi � φi ●

A ψi], which “may be computed by simulating all possible

steps that the parse algorithm may take starting in the state

GOTOk(S, A) with an empty parse stack”. They further

pointed out that the set U {FIRSTk(ψi)} is not enough, and

proceeded to discuss how to cover edgy cases such as when

the grammar is circular or contains ε-productions, and

ended their discussion with cases where the simulated pars-

ing might fail due to circularity.

1.3.2 Method of Parr

The PhD thesis of Parr [5] proposed a method to compute

FIRSTk(α). This is used in the implementation of LL(k)

parser generator ANTLR. Parr’s PhD thesis introduces the

GLA grammar representation in chapter 3, and explains

lookahead computation and representation in chapter 4.

Basically, a data structure called GLA (Grammar

Lookahead Automata) is used to represent grammars. To

calculate LR(k) lookahead, do a constrained walk of a

GLA, and the lookaheads are stored as a lookahead DFA

(Deterministic Finite Automata). He also discussed how to

solve the cycle issue with cache mechanism.

This is similar to the method of Kristensen and Madsen

in that it utilizes the parsing machine to do the computation

and tightly integrates the calculation of lookahead strings

with parsing, and in that none of them is a standalone

method to calculate FIRSTk(α).

1.3.3 Method of Aho and Ullman

Aho and Ullman gave a standalone algorithm to calculate

FIRSTk(α), which is given as Algorithm 5.5 in [1, page

357]. Their method is described below.

First an operator ⊕ k is defined: given an alphabet Σ and

two sets A⊆ Σ*, B⊆ Σ*, S = A⊕ k B is the set of all

strings formed from the ordered concatenation of string

pairs (a, b), where a ϵ A, b ϵ B, and the length of strings in

S is less than or equal to k. In addition, if A = Ø or B = Ø,

then S = Ø.

Now given a context free grammar G = (N, Σ, P, S) and

a string α = X1X2…Xn in (N U Σ)*, FIRSTk(α) =

FIRSTk(X1)⊕ k FIRSTk(X2)⊕ k …⊕ k FIRSTk(Xn), so we

just need to calculate FIRSTk(X) for any X.

If X ϵ ({ε}U Σ), then FIRSTk(X) = X for k ≥ 0.

Otherwise, X ϵ N, then FIRSTk(X) can be obtained in

the steps below. Define a set Fi(X) for X:

1) If X ϵ ({ε}U Σ), then Fi(X) = X for i ≥ 0;

2) If X ϵ N, then F0(X) is the set of all x ϵ Σ* such that a

production rule X � xα exists and |x| ≤ k; If X � ε, then

F0(X) = {ε}; If X � αβ, α ϵ N
+
 and β ϵ (NU Σ)*, then

F0(X) = Ø;

3) Recursively obtain Fi+1(X) based on previous calcula-

tion: Fi+1(X) is the set of all x ϵ Σ* such that for every pro-

duction rule X � Y1Y2…Yn, x = {Fi(Y1)⊕ k Fi(Y2)⊕ k

…⊕ k Fi(Yn)} U Fi(X);

4) It is notable that step 3) will converge after a certain

number of steps, such that Fi+1(X) = Fi(X) for all X ϵ N,

then FIRSTk(X) = Fi(X).

In summary, the method of Aho and Ullman breaks

down the task of evaluating the terminal heads of length k

of a string α into applying the ⊕ k operation on the com-

ponent symbols of α. It solves the second problem by build-

ing a table from bottom up like in dynamic programming.

It should be noted that following the above method, the

result set will contain strings whose length L ≤ k, however

by definition the set FIRSTk(α) contains strings of length k.

Aho and Ullman did not discuss this in more details, since

it is really just a trivial matter. To clarify this little ambigui-

ty, we take it as that, at the end of the above calculation, we

will remove those terminal strings with length less than k

from the result set.

2. The New FIRSTk(α) Algorithm:

THEADk(α)

In this section we introduce the new algorithm [10], discuss

its correctness and complexity, and compare to existing

methods.

2.1 The THEADk(α) Algorithm

We use THEADk(α) as the name of the new algorithm, and

also use it to represent the set of terminal heads of string α,

where the length of each terminal head string is k, i.e.,

THEADk(α) is the set of k-theads of string α. THEADk(α)

contains all m-theads of string α where m = k, and is the

same as FIRSTk(α).

To illustrate the algorithm, we define these notations:

For a string α = X1X2…Xn, |α| is the length of α (|α| = n);

α[i] is the i
th

 symbol of string α; h(α, k) denotes the first k

symbols of α, i.e., prefix string of α of length k; hv(α, k) is a

substring of α that consists of the prefix string of α up to

the k-th symbol that does not vanish, or the entire α string if

it contains less than k symbols that do not vanish; prod(α, i)

is the set of strings obtained by applying all possible pro-

ductions to the i
th

 symbol Xi of α.

We also let T stand for the set of Terminals, and NT

stand for the set of Non-Terminals. T
k
 stands for the set of

strings made of Terminals and whose length is k. Ø stands

for the empty set.

Algorithm 1, THEADk(α), is shown in Figure 1.

In Algorithm 1, H and S are sets of strings initially emp-

ty. L is an auxiliary ordered list of strings which initially

consists just of hv(α, k).

Lines 5 to 10 add to the end of L the result of applying

all possible productions to the i
th

 symbol in the current

member β of L, omitting strings that are already in L, and

truncating all members added which have k or more sym-

bols that do not vanish, by deleting the part of the string

following the k-th symbol that does not vanish.

Lines 11 to 13 remove from L all strings whose i
th

 sym-

bol is a non-terminal.

Lines 14 to 19 remove from L all strings whose prefix of

length k consisting entirely of terminals, and add the pre-

fixes of length k involved to the set H.

Lines 20 to 25 remove from L all strings of length less

than k which consist entirely of terminals, and add these to

the set S.

On line 26, if L is empty, the algorithm terminates. H

now will contain the required set of terminal strings of

length k of α, i.e., the k-head set of α; and S will contain the

set of terminal strings of length less than k which are de-

rived from α. Obviously, H gives the result of THEADk(α).

 ALGORITHM 1. THEADk(α)

 INPUT: STRING α = X1X2…Xn; Integer k: length of theads.

OUTPUT: SET H – CONTAINS K-THEADS OF α, AND (OPTION-

ALLY) SET S – CONTAINS M-THEADS OF α, M < K.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

H  Ø

S  Ø

L  { hv(α, k) }

for i = 1 to k do

foreach string β in L do

 φ = prod(β, i)

 foreach string γ in φ do

 L  L U { hv(γ, k) }

 end foreach

end foreach

foreach string β in L do

 if β[i] ϵ NT then L  L – { β }

end foreach

foreach string β in L do

 if h(β, k) ϵ Tk then

 L  L – { β }

 H  H U { h(β, k) }

 end if

end foreach

foreach string β in L do

 if |β| < k AND β ϵ T|β| then

 L  L – { β }

 S  S U { β }

 end if

end foreach

if L = = Ø then stop

end for

Figure 1. Algorithm THEADk(α)

The entire algorithm derives a closure of the initial

string in L, where each derived string in the closure satis-

fies the requirements on the length (should be equal to k) of

the strings, and on the type of symbols (should be terminal

symbol) in the strings.

2.2 Correctness of the Algorithm

We show the correctness of Algorithm 1 below.

Lemma 1. In Algorithm 1, at the end of the i
th

 outer

loop cycle (lines 4-27), for each string s in list L, where s =

X1X2…Xn, the first i symbols X1, X2, …, Xi of s (or all the

symbols of s if |s| < i) are terminals.

Proof. Prove by induction. For outer loop cycle i = 1, the

step of lines 11-13 removes from L all strings whose 1
st

symbol is a non-terminal. Thus for all the strings remained

in L, the 1
st
 symbol is terminal. Now assume at cycle i = n-

1, for all the strings in L, the first i symbols are terminals.

At cycle i = n, the inner loop (lines 5-10) only makes deri-

vations on the n
th

 symbol, and does not introduce any non-

terminal symbols to the first n-1 symbols; next, Algorithm

1 removes from L those strings whose n
th

 symbol is a non-

terminal (lines 11-13), thus for all the symbols in L, now

their first n symbols are terminals. The remaining steps

(lines 14-26) do not alter this fact. Therefore Lemma 1

holds. □

Lemma 2. In Algorithm 1, at the end of the i
th

 outer

loop cycle, all the possible combinations of i-thead deriva-

tions are generated by the inner loop (lines 5-10).

Proof. This also can be proved by induction. When i = 1,

this is obvious from the inner loop. Assume this holds for i

= n-1. When i = n, for each string s in L, the first n-1 sym-

bols of s are all terminals. In the inner loop, for each string

s in L, all the possible productions are applied to the n
th

symbol of s, thus all the possible terminal and non-terminal

symbols at the n
th

 position are generated by string s and

included in L. These form new derived strings, appended to

the end of L, and processed by the next cycle. Thus Lemma

2 holds. □

Lemma 3. Algorithm 1 ends in k or less outer loop cy-

cles (lines 4-27) when L becomes empty.

Proof. From Lemma 1, for all the strings generated in

the k
th

 outer loop cycle, their first k symbols are all termi-

nals, these are then removed from L (lines 14-25). In the

cycles, all members added to L that have k or more sym-

bols that do not vanish will be truncated (lines 3, 8 and 12).

Thus L will be empty at the end of at most the k
th

 loop

cycle, and Algorithm 1 ends. □

Theorem 1. When Algorithm 1 ends, all the possible k-

thead derivations are included in H, and all m-thead deriva-

tions are included in S, where m < k.

Proof. This follows from Lemma 1, Lemma 2 and

Lemma 3. □

2.3 Complexity of the Algorithm

In Algorithm 1, the complexity of the step of lines 6-9 is

O(|Pij|), where |Pij| is the number of possible productions to

the i
th

 symbol in the j
th

 member of L. For the loop of lines

5-10, the complexity is O(|Pij||L|).

The complexity of the entire algorithm is hard to analyze

directly, but it is easy to see that, since the primary output

is set H, the theoretical lower boundary of the number of

steps needed is equal to the number of elements in the out-

put set: Ω(|H|). H is the set of terminal strings of length k of

α, so Ω(|H|) = Ω(|T|
k
), where |T| is the number of terminals

in the alphabet. This is the theoretical lower boundary of

both time and space requirements. Obviously, it is expo-

nential in nature as expected. This is demonstrated by test

case 2 in section 4 “Performance Study”.

2.4 Comparison with other algorithms

Aho and Ullman’s method and our method are both

standalone algorithms to compute FIRSTk(α), where the

computation rely on a set of production rules of the gram-

mar only, and the parsing machine is not needed. Thus

these two methods are better than the other methods in

literature research.

Aho and Ullman’s method takes a bottom up approach

by first calculating FIRSTi(X) for each symbol X, i = 1, 2,

… k, then combining these building blocks to obtain

FIRSTk(α). This is a systematic approach, which is also

demonstrated in their handling of FIRST1(α), which is

discussed in [2, page 189]. Once the preparation phase is

done, for whatever input string, the task boils down to

applying the ⊕ k operation on the consisting symbols of

the input string, which concatenates elements from each

set. However, the systematic nature also means that the

overhead must always be taken to achieve good efficiency.

From a practical point of view, since input strings are un-

known, the entire preparation step must be done and its

result be cached for later use.

In comparison, our method takes a top down approach.

No previous computation is needed. The algorithm com-

putes FIRSTk(α) on the fly based on symbols included in

the input string. No cache is needed. It removes unneces-

sary overhead strings on the way of computation.

In nature, both methods are equivalent. Our method can

also be used for the preparation process of Aho and

Ullman’s method.

Another difference is that the FIRSTk(α) method of Aho

and Ullman gives a set of terminal heads whose length L ≤

k, and this set must be kept during the entire calculation

process, only at the very end can we remove those L < k. In

comparison, our method separates terminal heads into two

sets, for one set the length of terminal heads L = k, and for

the other set L < k. The second set where L < k can be

ignored from the calculation process.

3. Examples

In this section we show how THEADk(α) and FIRSTk(α)

work on the same input string.

Example 4. Given grammar G2 (ε is the empty string):

X � Y | x | ε

Y � Z | y | ε

Z � X | z | ε

U � u

Find the set of 2-theads of XYZU using Algorithm 1:

THEADk(α).

Since symbols X, Y and Z can all vanish, and U does

not vanish, the string XYZU contains less than 2 symbols

(i.e., only 1) that do not vanish, therefore we need to in-

clude the entire string XYZU as the initial element in the

list L. Thus, at the beginning, L = {XYZU}.

First round of operation for i = 1 is shown in Table 1.

Table 1. Example 4, round 1 (i = 1)

i j

String added to L String Sequence Number

1 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

XYZU

YYZU

xYZU

YZU

ZYZU

yYZU

ZZU

yZU

ZU

zYZU

XZU

zZU

XU

zU

U

xZU

YU

xU

u

yU

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Table 2. Example 4, round 2 (i = 2)

i j String added to L String Sequence Number

2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

xYZU

yYZU

yZU

zYZU

zZU

zU

xZU

xU

yU

xZZU

xy

yZZU

yy

yXU

yz

zZZU

zy

zXU

zz

zu

xXU

xz

xu

yu

xXZU

yXZU

yYu

yx

zXZU

zYU

zx

xYU

xx

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

At this time, the step of lines 5-10 finishes. Next we fol-

low lines 11-25. Remove from L all strings with non-

terminals in the i
th

 (first) position; remove from L all

strings whose prefixes of length 2 consisting entirely of

terminals, and add these prefixes to H; and remove from L

all strings of length less than 2 and contains only terminal

strings. At this time, we have H = {}, S = {u}, L = {xYZU,

yYZU, yZU, zYZU, zZU, zU, xZU, xU, yU}.

The second round where i = 2 is shown in Table 2.

Remove all strings with non-terminals in the i
th

 (second)

position, remove all strings whose prefixes of length 2 are

made up of terminals, and remove all strings of length less

than 2 and contains only terminal strings, we have H = {xy,

yy, zy, zz, zu, xu, xz, yz, yx, yu, zx, xx}, S = {u}, L = {}.

Example 5. Given grammar G2 as in Example 4, find

the set of 2-theads of XYZU, this time use the FIRSTk(α)

algorithm of Aho and Ullman.

Following the steps in Aho and Ullman’s algorithm, we

need FIRSTk(α), where α = XYZU, and k = 2.

Fi(p) = {p}, for all p ϵ {x, y, z, u, ε}, and i ≥ 0.

F0(X) = {x, ε}

F0(Y) = {y, ε}

F0(Z) = {z, ε}

F0(U) = {u}

F1(X) = {x, y, ε}

F1(Y) = {y, z, ε}

F1(Z) = {z, x, ε}

F1(U) = {u}

F2(X) = {x, y, z, ε}

F2(Y) = {x, y, z, ε}

F2(Z) = {x, y, z, ε}

F2(U) = {u}

From this point on Fi(S) = F2(S) for i ≥ 3, S = X, Y, Z,

U. It converges here. Therefore:

FIRST2(X) = F2(X) = {x, y, z, ε}

FIRST2(Y) = F2(Y) = {x, y, z, ε}

FIRST2(Z) = F2(Z) = {x, y, z, ε}

FIRST2(U) = F2(U) = {u}

Note that here FIRST2(X) contains strings of length less

than 2, because we need to keep them in the intermediate

steps, as discussed at the end of section 2.4.

Finally, we can calculate FIRSTk(α) = FIRST2(XYZU)

= FIRST2(X)⊕ 2FIRST2(Y)⊕ 2 FIRST2(Z)⊕ 2 FIRST2(U)

= {x, y, z, ε}⊕ 2{x, y, z, ε}⊕ 2{x, y, z, ε}⊕ 2{u}

= {xx, xy, xz, xu, yx, yy, yz, yu, zx, zy, zz, zu, u}

As a last step as discussed at the end of section 1.3.3, we

remove strings whose length are less than 2, which is ‘u’

here, and obtain {xx, xy, xz, xu, yx, yy, yz, yu, zx, zy, zz,

zu}. This is the same result as using our algorithm.

4. Performance Study

We implemented both the THEADk(α) algorithm and the

FIRSTk(α) algorithm, and compared their performance. In

each experiment, the start time and end time are measured

multiple times, and then average start time is subtracted

from average end time to obtain the running time. The

study was conducted on a Sun Microsystems sun4u Netra

440 server running Solaris. CPU is 1.6GHz, memory is 12

GB. For all the experiments below, test case 2 uses the

most memory (hundreds of MB), so memory is not an is-

sue. In the figure legends, THEAD represents THEADk(α),

and FIRST represents FIRSTk(α).

Grammar G2 is used as the testing grammar.

4.1 Test case 1: α = UUUUUUUUUU, k = 1 to 10

Result is shown in Table 3 and Figure 2. When α =

UUUUUUUUUU, there is only one terminal head, which is

u
k

for k = 1 to 10. The speed is very fast, at the level of

microsecond. The relatively long delay when k = 1 for the

FIRSTk(α) algorithm should be caused by the initial con-

struction of the Fi(X) table.

Table 3. Number of generated k-theads and time spent on

input string UUUUUUUUUU, for k = 1 to 10

k # of

k-theads

Time (sec)

By HEAD

Time (sec)

By FIRST

1 1 0.000022 0.000108

2 1 0.000009 0.000014

3 1 0.000012 0.00002

4 1 0.000018 0.000017

5 1 0.00002 0.00002

6 1 0.000027 0.000026

7 1 0.000032 0.000021

8 1 0.000072 0.000022

9 1 0.000047 0.000026

10 1 0.000053 0.000055

Figure 2. Time cost of THEADk(α) versus FIRSTk(α)

for α = UUUUUUUUUU, k = 1 to 10

4.2 Test case 2: α = XXXXXXXXXX, k = 1 to 8

Result is shown in Table 4 and Figure 3. This is the worst

case scenario where the theoretical bound of exponential

behavior is observed. This is because each symbol of the

input string is a non-terminal (X), which can derive 3 ter-

minals x, y and z. The number of k-theads that can be gen-

erated is 3
k
. When k is as small as 10, this will take hours to

finish. The result is similar when α = YYYYYYYYYY or

α = ZZZZZZZZZZ.

Table 4. Number of generated k-theads and time spent on

input string XXXXXXXXXX, for k = 1 to 8

k # of

k-theads

Time (sec)

By THEAD

Time (sec)

By FIRST

1 3 0.000242 0.000221

2 9 0.001302 0.00145

3 27 0.00599 0.009041

4 81 0.032146 0.065045

5 243 0.213318 0.425997

6 729 1.463382 3.282263

7 2187 12.21782 26.23495

8 6561 135.462 297.5679

Figure 3. Time cost of THEADk(α) versus FIRSTk(α)

for α = XXXXXXXXXX, k = 1 to 8.

4.3 Test case 3: α = XYZUXYZUYX, k = 1 to 9

Result is shown in Table 5 and Figure 4. Here α is a ran-

domly generated string. We can see that THEADk(α) per-

forms better than FIRSTk(α) for k = 1 to 9, but for k = 10,

FIRSTk(α) runs faster. This possibly has to do with the way

of implementation: in the implementation of FIRSTk(α), an

ordered list is used to store the strings generated intermedi-

ately; for THEADk(α), the list used cannot be ordered,

since new inserted strings will need to be processed and

have to be attached to the end. When inserting a new gen-

erated string to the end of list L, THEADk(α) will search

through the entire list to make sure it does not exist yet. To

overcome this issue an auxiliary ordered list is used in the

implementation. This slows it down when the list is long.

Of course, better implementation using more efficient data

structure can improve this scenario.

Table 5. Number of generated k-theads and time spent on

input string XYZUXYZUYX, for k = 1 to 10

k # of

k-theads

Time (sec)

By THEAD

Time (sec)

By FIRST

1 4 0.000079 0.000315

2 16 0.00038 0.001807

3 63 0.002083 0.016498

4 162 0.011877 0.063377

5 486 0.100032 0.460147

6 1296 0.624867 2.756787

7 2916 3.3104 11.8662

8 4374 14.64284 26.12881

9 6561 62.89018 71.2255

10 6561 94.49193 81.37379

Figure 4. Time cost of THEADk(α) versus FIRSTk(α)

for α = XYZUXYZUYX, k = 1 to 10.

4.4 Test case 4: Average on 100 strings of length 10, k

= 1 to 8

100 input strings, each of length 10, are generated from the

alphabet of {X, Y, Z, U} using a random number generator,

and then fed to the algorithms to compare their perfor-

mance. This means the input strings may be like:

1 YXXXYUUUUU

2 UZZUUUZXXY

3 YZZUYZZYZU

4 ZZUZUZYUZY

 …

100 UUYXXUUXUY

Result is shown in Table 6 and Figure 5. Table 4 shows

the average number of k-theads generated and average time

used by the THEADk(α) and FIRSTk(α) algorithms over

100 input strings of length 10, and k = 1 to 8. Figure 4

shows the graphical version of the average time used when

k increases. It can be seen that the THEADk(α) algorithm

uses less time.

Table 6. Average number of generated k-theads and time

spent on 100 random strings of length 10, for k = 1 to 8

k Avg # of

k-theads

Time (sec)

By THEAD

Time (sec)

By FIRST

1 3.07 0.000068 0.000177

2 10.37 0.000381 0.000969

3 32.73 0.001999 0.006003

4 95.43 0.011761 0.03663

5 270.25 0.078635 0.246849

6 697.89 0.505454 1.496519

7 1662.39 3.484229 8.207717

8 3669.3 27.723004 55.275918

Figure 5. Time cost of THEADk(α) versus FIRSTk(α)

when k increases. Averaged over 100 strings of length 10

4.5 Test case 5: 100 strings of length 1 to 100, k = 2

In this test case, k is fixed, while the input string is a k-

prefix of the following randomly generated string, where

input string length |α| = 1 to 100, i.e., the input strings may

be like:

1 Y

2 YZ

3 YZZ

4 YZZY

 …

100 YZZYYXZYYXYZUXYYUYXZUYYUZXUYZZYYZXX

 XXXUUUYXYZZYZYZUUXZXZYZXXUZUXYZYYYU

 YZZZZZUZXZYYYYZYYUXZZUYZUZXUY

Result is shown in Figure 6. The time used by

THEADk(α) does not increase with k, but it does increase

with FIRSTk(α) (and the increase is linear visually from the

graph). This is easy to explain. THEADk(α) throws away

the substring after the second symbol that does not vanish,

so each time it starts with the prefix “YZ” of the input

string. In comparison, FIRSTk(α) needs to do the ⊕ k oper-

ation on every symbol of the input string, and n-1 ⊕ k

operations are applied for an input string of n symbols. To

overcome this issue, FIRSTk(α) needs to use a pre-

processing the same as line 3 of Algorithm 1.

Figure 6. Time cost of THEADk(α) versus FIRSTk(α)

when k = 2, and string length |α| increases

4.6 Summary

We can draw several conclusions from the experiments.

First of all, when the input string contains terminal sym-

bols only, the speed is the fastest. When the input string

contains non-terminal symbols only, the speed is the slow-

est, and may lead to the worst case scenario: exponential

increase in computation time. For a grammar as simple as

G2, when k = 10, it will take hours to finish using both

algorithms.

In general the THEADk(α) algorithm performs better

than the FIRSTk(α) algorithm, as shown by test case 4,

which is averaged over 100 randomly generated strings of

length 10 for k = 1 to 10.

However, it is also possible that FIRSTk(α) runs faster

than THEADk(α), as shown in test case 3 when k = 10.

Finally, when k is small, but input string is long,

THEADk(α) will perform better than FIRSTk(α), as shown

by test case 5. Actually, for this scenario, the time

THEADk(α) takes will not increase when the size of the

input string increase. However, the time used by FIRSTk(α)

will increase linearly according to the length of the input

string.

5. Implementation

We briefly discuss the implementation of the two ap-

proaches here, which is done in ANSI C from scratch.

To make the comparison of the two algorithms reasona-

ble, it is necessary to implement them with similar data

structures.

The major operations involved in both algorithms are set

operations. In the current implementation, a set is imple-

mented as a linked list. Search in the set is done by going

through the list in linear order. That a linked list is chosen

for the implementation is because of the nature of the

THEADk(α) algorithm: a new generated string has to be

appended to the end of the current set, which makes queue

a natural and necessary choice. A queue of unknown size as

in the current scenario is in turn naturally implemented as a

linked list.

To guarantee similar search experience for both algo-

rithms, an ordered list is used. For the method of Aho and

Ullman, this is no problem. But for the THEADk(α) meth-

od, the queue (implemented as a list) to be appended to can

not be ordered, so an auxiliary list is provided which stores

the same strings as the queue but is in sorted order, such

that when a search in the auxiliary ordered list does not

return a hit, the new string is appended to the end of the

queue. The maintenance of two lists in the THEADk(α)

algorithm implementation obviously will slow it down to

some degree.

This implementation can be improved by providing an

auxiliary binary search tree or a hash table to both methods,

which works much more efficient when decide if a string

exists in a set. This improvement should be of more signifi-

cance to the performance of the THEADk(α) algorithm

implementation according to the above discussion.

Finally, a linked list suffices for all the operations of the

THEADk(α) algorithm. For the algorithm of Aho and

Ullman, an array is also used to store the pre-computed

FIRSTk(Xi) values of all the symbols Xi, such that given a

random string α = X1X2…Xn, FIRSTk(Xi) can be retrieved

in constant time using index of Xi in the symbol table for

the calculation of FIRSTk(α) = FIRSTk(X1)⊕ k

FIRSTk(X2)⊕ k …⊕ k FIRSTk(Xn).

6. Application

One application of the algorithm presented here is to be

used in a LR(k) parser generation algorithm.

Our study of the LR(k) algorithm shows that the calcula-

tion of LR(k) lookahead is one of the major steps involved.

We designed and implemented the Edge-Pushing LR(k)

algorithm, which depends on the THEADk(α) function to

calculate k-lookahead. The Edge-Pushing algorithm is

shown below in Figure 7, which is taken from a previous

paper [11]. The THEADk(α) algorithm is used on line 13.

The Edge-Pushing algorithm is implemented in the

HYACC parser generator, which is available as an open

source parser generator [12][13].

 Algorithm 2: Edge_Pushing(S)

 INPUT: INADEQUATE STATE S

OUTPUT: S WITH CONFLICT RESOLVED, IF S IS LR(K)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Set_C  Ø

Set_C2  Ø

k  1

foreach final configuration T of S do

T.z  0

Let C be the head configuration of T, and X be the

 context generated by C

Add triplet (C, X, T) to set Set_C

end foreach

while Set_C ≠ Ø do

k  k + 1

foreach (C:A � α • B β, X, T) in Set_C do

 k’  k - C.z

 calculate ψ  theads(β, k’)

 foreach context string x in ψ do

 if x.length == k’ then

 Insert (S, X, last symbol of string x, C, T) to

 Set_C2 and add to LR(k) parsing table

 else if x.length == k’ - 1 then

 Σ  lane_tracing(C)

 foreach configuration σ in Σ do

 σ.z  C.z + k’

 Let m be the generated context symbol in σ

 Insert(S, X, m, σ, T) to Set_C2 and add to

 LR(k) parsing table

 end if

 end foreach

end foreach

 Set_C  Set_C2

 Set_C2  Ø

end while

Figure 7. The Edge-Pushing Algorithm where

THEADk(α) is used

7. Conclusion

In this paper we have presented a new algorithm to calcu-

late the terminal heads of length k, which is called

THEADk(α).

We reviewed relevant literature, of which Aho and

Ullman’s method is the only previously available

standalone algorithm for this purpose.

We showed the new algorithm, discussed its correctness

and complexity, and compared to previous work. Examples

are given to evaluate terminal heads of length k of a given

string by using the THEADk(α) algorithm and the

FIRSTk(α) method of Aho and Ullman.

An empirical study was conducted to compare the

THEADk(α) algorithm and the FIRSTk(α) algorithm. In

general, when averaged over a large number of randomly

generated input strings, THEADk(α) performs faster than

FIRSTk(α). When the input string α is long but k is small,

THEADk(α) always performs better than FIRSTk(α).

Finally, we discussed the application of the new

THEADk(α) algorithm, and pointed out that it has been

used to implement the edge-pushing algorithm in the HY-

ACC parser generator.

Due to the fact that FIRSTk(α) is a fundamental algo-

rithm that works as a basic building block in compiler theo-

ry and practice, its improvement should have wide impact.

References

[1] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing,

Translation, and Compiling, vol. 1 (page 357, Algorithm

5.5). Prentice-Hall, 1972.

[2] Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman. Compilers,

Principles, Techniques, and Tools. Addison Wesley, 1986.

[3] Frank L. DeRemer and Thomas Pennello. Efficient computa-

tion of LALR(1) look-ahead set. TOPLAS, 4(4), October

1982.

[4] Ole L. Madsen Bent B. Kristensen. Methods for computing

LALR(k) lookahead. ACM Transactions on Programming

Languages and Systems, 3(1):60–82, January 1981.

[5] Terence Parr. Obtaining practical variants of LL(k) and

LR(k) for k > 1 by splitting the atomic k-tuple. PhD thesis,

Purdue University, August 1993.

[6] ANTLR. Available at: http://www.antlr.org

[7] Stephen C. Johnson. YACC – yet another compiler compiler.

CSTR 32, Bell Laboratories, Murray Hill, NJ, 1975.

[8] Charles Donnelly, Richard Stallman. Bison, The YACC-

compatible Parser generator (for Bison Version 1.23). 1993.

[9] GNU Bison. Available at: http://www.gnu.org/software/bison

[10] David Pager. Evaluating Terminal Heads Of Length K.

Technical Report No. ICS2009-06-03, University of Hawaii,

Information and Computer Sciences Department, November

2008. Available at: http://www.ics.hawaii.edu/research/tech-

reports/terminals.pdf/view

[11] Xin Chen, David Pager. The Edge-Pushing LR(k) Algorithm.

Proceedings of International Conference on Software Engi-

neering Research and Practice, p.490-495. Las Vegas, July

18-21, 2011.

[12] Xin Chen, David Pager. Full LR(1) Parser Generator Hyacc

And Study On The Performance of LR(1) Algorithms. Pro-

ceedings of The Fourth International C* Conference on

Computer Science & Software Engineering, p.83-92. Mon-

treal, Canada, May 16-18, 2011.

[13] Xin Chen. LR(1) Parser Generator Hyacc (2008). Available

at: http://hyacc.sourceforget.net

