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Abstract  

This paper presents a new FIRSTk(α) algorithm for finding 

the terminal heads of length k of a given string in a context-

free grammar, which is an alternative to the previous meth-

od of Aho and Ullman. Performance study shows the new 

algorithm in general has better performance, which can be 

considerable under some scenarios, such as when the input 

string α is long. The algorithm can be applied in situations 

such as LL(k) and LR(k) parser generation, and has been 

actually implemented in a LR(k) parser generator.  

Categories and Subject Descriptors D.3.4 [Program-

ming Languages]: Processors – translator writing systems 

and compiler generators. F.4.2 [Mathematical Logic and 

Formal Languages]: Grammars and Other Rewriting Sys-

tems – parsing. 

General Terms Algorithms, Languages, Theory. 

Keywords FIRSTk(α); THEADk(α); Terminal heads; 

LR(k) 

1. Introduction 

1.1 Overview  

The algorithm to evaluate the terminal heads of length k of 

a given string in a context-free grammar, often denoted as 

FIRSTk(α), has important applications in the computation 

of LALR, LL and LR parser generation algorithms.  

The algorithm when k = 1 is applied widely, which is 

the simple case and can satisfy the design needs of a large 

proportion of programming languages in use today.  Exam-

ples are LALR(1) parser generators such as Yacc and Bison 

[7][8][9], as well as in LL(1) and LR(1) parser generators.  

The case of k > 1 is more complex and rare, however it 

is equally important since LALR(k), LL(k) and LR(k) are 

of wide interests in theoretical research, and has typical 

uses in practice too. One example is LL(k) parser generator 

ANTLR [5][6]. Other examples include language transla-

tion and natural language processing. For example, in Ital-

ian, genders are assigned to noun, verb and adjective. The 

English sentence “The <adjective> student is a <adjective> 

<person>” can derive into masculine form “Lo studente 

Italiano é un uomo alto” or feminine form “La studentesse 

Italian é una donna alta”. The Italian grammar involved 

here is LR(k) where k > 1. 

Here are two examples on the calculation of FIRSTk(α). 

 

Example 1. Given grammar S � NM, N � st, M � bc. 

We want to find FIRSTk(α) for string α = NM. This is a 

trivial case, we can just plug N and M into NM to obtain α 

= stbc. Calculation of FIRSTk(α) is easy: FIRST1(α) = {s}, 

FIRST2(α) = {st}, FIRST3(α) = {stb}, FIRST4(α) = {stbc}. 

 

Example 2. Given grammar S � NML, where N � Ns | 

ε, M � Mt | ε, L � bc. Here ε is the empty string. We want 

to find FIRSTk(α) for string α = NML. Then actually N = 

s*, and M = t*, and α = s*t*bc. FIRST1(α) = {s, t, b}, 

FIRST2(α) = {ss, st, sb, tt, tb, bc}, FIRST3(α) = {sss, sst, 

ssb, stt, stb, sbc, ttt, ttb, tbc}, FIRST4(α) = {ssss, ssst, sssb, 

sstt, sstb, ssbc, sttt, sttb, stbc, tttt, tttb, ttbc}. 

 

In this paper we present a new algorithm, which we call 

THEADk(α), to evaluate the terminal heads of length k of a 

given string in a context-free grammar. It is an alternative 

to the FIRSTk(α) algorithm of Aho and Ullman [1], and 

takes a very different approach. In this paper, we will pre-

sent the algorithm, give examples, compare to the method 

of Aho and Ullman, and discuss other related issues. 

Since FIRSTk(α) is a fundamental algorithm that works 

as a basic building block in compiler theory and practice, 

its improvement should have wide impact. 



1.2 Terminology 

We define the following terms for the discussion: 

An alphabet is a set of symbols, where a symbol is a 

non-divisible basic element of the alphabet.  

A sequence of symbols concatenated together is called a 

string. We represent the length of a string s as |s|. 

A grammar for a language L is defined as a 4-tuple G = 

(N, Σ, P, S). Here N is a set of non-terminal symbols, Σ is a 

set of terminal symbols disjoint from the set N, P is a set of 

productions, and S is the start symbol from which the pro-

duction rules originate from.  

A terminal symbol appears only on the right side of pro-

ductions. A non-terminal symbol can appear on either the 

left or right side of productions. 

A k-head of a string S is a string which is made of the 

first k symbols of S, or  the first k symbols of any string 

that can derive from S. 

A k-terminal head or k-thead of a string S is a k-head of 

S which is made up of terminal strings only. 

A string is said to vanish if it can derive the empty 

string. 

We use upper case Roman letters A, B, C, … to repre-

sent non-terminals, lower case Roman letters a, b, c, … to 

represent terminals, and Greek letters α, β, γ, … to repre-

sent strings. An empty string is represented by ε. 

 

Example 3. Given grammar G1: 

X � X Y | a 

Y � b | ε 

Here a and b are terminal symbols because they appear 

only on the right side of the productions of G1. X and Y are 

non-terminal symbols because they can appear on the left 

side of the productions of G1.  

Y vanishes because it can derive the empty string. The 

shortest string X can derive is a, therefore it does not vanish 

because it cannot derive the empty string. 

Given string α = XY, its 1-head can be X or a, and its 2-

head can be XY, XX, aY, Xb, ab or aa. Its 1-thead is a, and 

its 2-thead can be aa or ab. 

1.3 Related Work 

A survey of previous work on the calculation of  FIRSTk(α) 

gives the following literature. 

1.3.1 Early work 

The work of DeRemer and Pennello [3] and Kristensen and 

Madsen [4] are examples of early discussions on the calcu-

lation of FIRSTk(α), which are typically vague and impre-

cise. 

The work of Kristensen and Madsen [4] on “Methods 

for computing LALR(k) lookahead” discussed computing 

FIRSTk for finding lookahead strings, which is needed by 

their LALR(k) algorithm. Their method is based on simu-

lating all steps involved in parsing starting from a relevant 

state in a LR(0) machine. Given an example of calculating 

LALRk for [A � ● α], their method wants to obtain the 

sets U {FIRSTk(ψi) | i = 1,2, …, n} for all items [Bi � φi ● 

A ψi], which “may be computed by simulating all possible 

steps that the parse algorithm may take starting in the state 

GOTOk(S, A) with an empty parse stack”. They further 

pointed out that the set U {FIRSTk(ψi)} is not enough, and 

proceeded to discuss how to cover edgy cases such as when 

the grammar is circular or contains ε-productions, and 

ended their discussion with cases where the simulated pars-

ing might fail due to circularity. 

1.3.2 Method of Parr 

The PhD thesis of Parr [5] proposed a method to compute 

FIRSTk(α). This is used in the implementation of LL(k) 

parser generator ANTLR. Parr’s PhD thesis introduces the 

GLA grammar representation in chapter 3, and explains 

lookahead computation and representation in chapter 4.  

Basically, a data structure called GLA (Grammar 

Lookahead Automata) is used to represent grammars. To 

calculate LR(k) lookahead, do a constrained walk of a 

GLA, and the lookaheads are stored as a lookahead DFA 

(Deterministic Finite Automata). He also discussed how to 

solve the cycle issue with cache mechanism. 

This is similar to the method of Kristensen and Madsen 

in that it utilizes the parsing machine to do the computation 

and tightly integrates the calculation of lookahead strings 

with parsing, and in that none of them is a standalone 

method to calculate FIRSTk(α). 

1.3.3 Method of Aho and Ullman 

Aho and Ullman gave a standalone algorithm to calculate 

FIRSTk(α), which is given as Algorithm 5.5 in [1, page 

357]. Their method is described below.  

First an operator ⊕ k is defined: given an alphabet Σ and 

two sets A⊆  Σ*, B⊆  Σ*, S = A⊕ k B is the set of all 

strings formed from the ordered concatenation of string 

pairs (a, b), where a ϵ A, b ϵ B, and the length of strings in 

S is less than or equal to k. In addition, if A = Ø or B = Ø, 

then S = Ø.  

Now given a context free grammar G = (N, Σ, P, S) and 

a string α = X1X2…Xn in (N U Σ)*, FIRSTk(α) = 

FIRSTk(X1)⊕ k FIRSTk(X2)⊕ k …⊕ k FIRSTk(Xn), so we 

just need to calculate FIRSTk(X) for any X.  

If X ϵ ({ε}U Σ), then FIRSTk(X) = X for k ≥ 0.  

Otherwise, X ϵ N, then FIRSTk(X) can be obtained in 

the steps below. Define a set Fi(X) for X:  

1) If X ϵ ({ε}U Σ), then Fi(X) = X for i ≥ 0;  

2) If X ϵ N, then F0(X) is the set of all x ϵ Σ* such that a 

production rule X � xα exists and |x| ≤ k; If X � ε, then 

F0(X) = {ε}; If X � αβ, α ϵ N
+
 and β ϵ (NU Σ)*, then 

F0(X) = Ø;  



3) Recursively obtain Fi+1(X) based on previous calcula-

tion: Fi+1(X) is the set of all x ϵ Σ* such that for every pro-

duction rule X � Y1Y2…Yn, x = {Fi(Y1)⊕ k Fi(Y2)⊕ k 

…⊕ k Fi(Yn)} U Fi(X);  

4) It is notable that step 3) will converge after a certain 

number of steps, such that Fi+1(X) = Fi(X) for all X ϵ N, 

then FIRSTk(X) = Fi(X).  

In summary, the method of Aho and Ullman breaks 

down the task of evaluating the terminal heads of length k 

of a string α into applying the ⊕  k operation on the com-

ponent symbols of α. It solves the second problem by build-

ing a table from bottom up like in dynamic programming. 

It should be noted that following the above method, the 

result set will contain strings whose length L ≤ k, however 

by definition the set FIRSTk(α) contains strings of length k. 

Aho and Ullman did not discuss this in more details, since 

it is really just a trivial matter. To clarify this little ambigui-

ty, we take it as that, at the end of the above calculation, we 

will remove those terminal strings with length less than k 

from the result set. 

2. The New FIRSTk(α) Algorithm: 

THEADk(α) 

In this section we introduce the new algorithm [10], discuss 

its correctness and complexity, and compare to existing 

methods. 

2.1 The THEADk(α) Algorithm 

We use THEADk(α) as the name of the new algorithm, and 

also use it to represent the set of terminal heads of string α, 

where the length of each terminal head string is k, i.e., 

THEADk(α) is the set of k-theads of string α. THEADk(α) 

contains all m-theads of string α where m = k, and is the 

same as FIRSTk(α).  

To illustrate the algorithm, we define these notations: 

For a string α = X1X2…Xn, |α| is the length of α (|α| = n); 

α[i] is the i
th

 symbol of string α; h(α, k) denotes the first k 

symbols of α, i.e., prefix string of α of length k; hv(α, k) is a 

substring of α that consists of the prefix string of α up to 

the k-th symbol that does not vanish, or the entire α string if 

it contains less than k symbols that do not vanish; prod(α, i) 

is the set of strings obtained by applying all possible pro-

ductions to the i
th

 symbol Xi of α.  

We also let T stand for the set of Terminals, and NT 

stand for the set of Non-Terminals. T
k
 stands for the set of 

strings made of Terminals and whose length is k. Ø stands 

for the empty set. 

Algorithm 1, THEADk(α), is shown in Figure 1. 

 

In Algorithm 1, H and S are sets of strings initially emp-

ty. L is an auxiliary ordered list of strings which initially 

consists just of hv(α, k).  

Lines 5 to 10 add to the end of L the result of applying 

all possible productions to the i
th

 symbol in the current 

member β of L, omitting strings that are already in L, and 

truncating all members added which have k or more sym-

bols that do not vanish, by deleting the part of the string 

following the k-th symbol that does not vanish. 

Lines 11 to 13 remove from L all strings whose i
th

 sym-

bol is a non-terminal. 

Lines 14 to 19 remove from L all strings whose prefix of 

length k consisting entirely of terminals, and add the pre-

fixes of length k involved to the set H. 

Lines 20 to 25 remove from L all strings of length less 

than k which consist entirely of terminals, and add these to 

the set S. 

On line 26, if L is empty, the algorithm terminates. H 

now will contain the required set of terminal strings of 

length k of α, i.e., the k-head set of α; and S will contain the 

set of terminal strings of length less than k which are de-

rived from α. Obviously, H gives the result of THEADk(α). 

 

 ALGORITHM 1. THEADk(α) 

 INPUT: STRING α = X1X2…Xn; Integer k: length of theads. 

OUTPUT: SET H – CONTAINS K-THEADS OF α, AND (OPTION-

ALLY) SET S – CONTAINS M-THEADS OF α, M < K. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

H  Ø 

S  Ø 

L  { hv(α, k) } 

for i = 1 to k do  

foreach string β in L do  

         φ = prod(β, i) 

    foreach string γ in φ do  

        L  L U { hv(γ, k) } 

    end foreach 

end foreach 

foreach string β in L do  

    if  β[i] ϵ NT  then L  L – { β } 

end foreach 

foreach string β in L do  

    if  h(β, k) ϵ Tk  then  

        L  L – { β } 

        H  H U { h(β, k) } 

    end if 

end foreach 

foreach string β in L do  

    if  |β| < k AND β ϵ T|β|  then  

        L  L – { β } 

        S  S U { β } 

    end if 

end foreach 

if  L = = Ø  then stop 

end for 

 

Figure 1. Algorithm THEADk(α) 



The entire algorithm derives a closure of the initial 

string in L, where each derived string in the closure satis-

fies the requirements on the length (should be equal to k) of 

the strings, and on the type of symbols (should be terminal 

symbol) in the strings. 

2.2 Correctness of the Algorithm 

We show the correctness of Algorithm 1 below. 

Lemma 1. In Algorithm 1, at the end of the i
th

 outer 

loop cycle (lines 4-27), for each string s in list L, where s = 

X1X2…Xn, the first i symbols X1, X2, …, Xi of s (or all the 

symbols of s if |s| < i) are terminals. 

Proof. Prove by induction. For outer loop cycle i = 1, the 

step of lines 11-13 removes from L all strings whose 1
st
 

symbol is a non-terminal. Thus for all the strings remained 

in L, the 1
st
 symbol is terminal. Now assume at cycle i = n-

1, for all the strings in L, the first i symbols are terminals. 

At cycle i = n, the inner loop (lines 5-10) only makes deri-

vations on the n
th

 symbol, and does not introduce any non-

terminal symbols to the first n-1 symbols; next, Algorithm 

1 removes from L those strings whose n
th

 symbol is a non-

terminal (lines 11-13), thus for all the symbols in L, now 

their first n symbols are terminals. The remaining steps 

(lines 14-26) do not alter this fact. Therefore Lemma 1 

holds. □ 

Lemma 2. In Algorithm 1, at the end of the i
th

 outer 

loop cycle, all the possible combinations of i-thead deriva-

tions are generated by the inner loop (lines 5-10). 

Proof. This also can be proved by induction. When i = 1, 

this is obvious from the inner loop. Assume this holds for i 

= n-1. When i = n, for each string s in L, the first n-1 sym-

bols of s are all terminals. In the inner loop, for each string 

s in L, all the possible productions are applied to the n
th

 

symbol of s, thus all the possible terminal and non-terminal 

symbols at the n
th

 position are generated by string s and 

included in L. These form new derived strings, appended to 

the end of L, and processed by the next cycle. Thus Lemma 

2 holds. □ 

Lemma 3. Algorithm 1 ends in k or less outer loop cy-

cles (lines 4-27) when L becomes empty. 

Proof. From Lemma 1, for all the strings generated in 

the k
th

 outer loop cycle, their first k symbols are all termi-

nals, these are then removed from L (lines 14-25). In the 

cycles, all members added to L that have k or more sym-

bols that do not vanish will be truncated (lines 3, 8 and 12). 

Thus L will be empty at the end of at most the k
th

 loop 

cycle, and Algorithm 1 ends. □ 

 

Theorem 1. When Algorithm 1 ends, all the possible k-

thead derivations are included in H, and all m-thead deriva-

tions are included in S, where m < k. 

Proof. This follows from Lemma 1, Lemma 2 and 

Lemma 3. □ 

2.3 Complexity of the Algorithm 

In Algorithm 1, the complexity of the step of lines 6-9 is 

O(|Pij|), where |Pij| is the number of possible productions to 

the i
th

 symbol in the j
th

 member of L. For the loop of lines 

5-10, the complexity is O(|Pij||L|). 

The complexity of the entire algorithm is hard to analyze 

directly, but it is easy to see that, since the primary output 

is set H, the theoretical lower boundary of the number of 

steps needed is equal to the number of elements in the out-

put set: Ω(|H|). H is the set of terminal strings of length k of 

α, so Ω(|H|) = Ω(|T|
k
), where |T| is the number of terminals 

in the alphabet. This is the theoretical lower boundary of 

both time and space requirements. Obviously, it is expo-

nential in nature as expected. This is demonstrated by test 

case 2 in section 4 “Performance Study”. 

2.4 Comparison with other algorithms 

Aho and Ullman’s method and our method are both 

standalone algorithms to compute FIRSTk(α), where the 

computation rely on a set of production rules of the gram-

mar only, and the parsing machine is not needed. Thus 

these two methods are better than the other methods in 

literature research. 

Aho and Ullman’s method takes a bottom up approach 

by first calculating FIRSTi(X) for each symbol X, i = 1, 2, 

… k, then combining these building blocks to obtain 

FIRSTk(α). This is a systematic approach, which is also 

demonstrated in their handling of FIRST1(α), which is 

discussed in [2, page 189]. Once the preparation phase is 

done, for whatever input string, the task boils down to 

applying the ⊕ k operation on the consisting symbols of 

the input string, which concatenates elements from each 

set. However, the systematic nature also means that the 

overhead must always be taken to achieve good efficiency. 

From a practical point of view, since input strings are un-

known, the entire preparation step must be done and its 

result be cached for later use. 

In comparison, our method takes a top down approach. 

No previous computation is needed. The algorithm com-

putes FIRSTk(α) on the fly based on symbols included in 

the input string. No cache is needed. It removes unneces-

sary overhead strings on the way of computation. 

In nature, both methods are equivalent. Our method can 

also be used for the preparation process of Aho and 

Ullman’s method. 

Another difference is that the FIRSTk(α) method of Aho 

and Ullman gives a set of terminal heads whose length L ≤ 

k, and this set must be kept during the entire calculation 

process, only at the very end can we remove those L < k. In 

comparison, our method separates terminal heads into two 

sets, for one set the length of terminal heads L = k, and for 

the other set L < k. The second set where L < k can be 

ignored from the calculation process. 



3. Examples 

In this section we show how THEADk(α) and FIRSTk(α) 

work on the same input string. 

 

Example 4. Given grammar G2 (ε is the empty string): 

X � Y | x | ε 

Y � Z | y | ε 

Z � X | z | ε 

U � u 

Find the set of 2-theads of XYZU using Algorithm 1: 

THEADk(α). 

 

Since symbols X, Y and Z can all vanish, and U does 

not vanish, the string XYZU contains less than 2 symbols 

(i.e., only 1) that do not vanish, therefore we need to in-

clude the entire string XYZU as the initial element in the 

list L. Thus, at the beginning, L = {XYZU}. 

First round of operation for i = 1 is shown in Table 1. 

 

Table 1. Example 4, round 1 (i = 1) 

i j 

 

String added to L String Sequence Number 

1 1 

 

 

 

2 

 

3 

4 

 

 

5 

6 

7 

 

8 

9 

 

 

10 

11 

12 

13 

 

14 

15 

16 

17 

18 

19 

20 

XYZU 

YYZU 

xYZU 

YZU 

ZYZU 

yYZU 

 

ZZU 

yZU 

ZU 

zYZU 

 

XZU 

zZU 

 

XU 

zU 

U 

 

xZU 

 

YU 

xU 

 

u 

 

yU 

 

 

 

1 

2 

3 

4 

5 

6 

 

7 

8 

9 

10 

 

11 

12 

 

13 

14 

15 

 

16 

 

17 

18 

 

19 

 

20 

Table 2. Example 4, round 2 (i = 2) 

i j String added to L String Sequence Number 

2  

 

 

 

 

 

 

 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

7 

 

8 

9 

10 

11 

12 

13 

14 

 

15 

16 

17 

18 

 

19 

20 

21 

 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

xYZU 

yYZU 

yZU 

zYZU 

zZU 

zU 

xZU 

xU 

yU 

xZZU 

xy 

yZZU 

yy 

yXU 

yz 

zZZU 

zy 

zXU 

zz 

zu 

xXU 

xz 

xu 

yu 

xXZU 

 

yXZU 

 

yYu 

yx 

 

zXZU 

 

zYU 

zx 

 

 

xYU 

xx 

 

 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

 

26 

 

27 

28 

 

29 

 

30 

31 

 

 

32 

33 



At this time, the step of lines 5-10 finishes. Next we fol-

low lines 11-25. Remove from L all strings with non-

terminals in the i
th

 (first) position; remove from L all 

strings whose prefixes of length 2 consisting entirely of 

terminals, and add these prefixes to H; and remove from L 

all strings of length less than 2 and contains only terminal 

strings. At this time, we have H = {}, S = {u}, L = {xYZU, 

yYZU, yZU, zYZU, zZU, zU, xZU, xU, yU}. 

 

The second round where i = 2 is shown in Table 2. 

Remove all strings with non-terminals in the i
th

 (second) 

position, remove all strings whose prefixes of length 2 are 

made up of terminals, and remove all strings of length less 

than 2 and contains only terminal strings, we have H = {xy, 

yy, zy, zz, zu, xu, xz, yz, yx, yu, zx, xx}, S = {u}, L = {}. 

 

Example 5. Given grammar G2 as in Example 4, find 

the set of 2-theads of XYZU, this time use the FIRSTk(α) 

algorithm of Aho and Ullman. 

 

Following the steps in Aho and Ullman’s algorithm, we 

need FIRSTk(α), where α = XYZU, and k = 2. 

Fi(p) = {p}, for all p ϵ {x, y, z, u, ε}, and i ≥ 0. 

F0(X) = {x, ε} 

F0(Y) = {y, ε} 

F0(Z) = {z, ε} 

F0(U) = {u} 

F1(X) = {x, y, ε} 

F1(Y) = {y, z, ε} 

F1(Z) = {z, x, ε} 

F1(U) = {u} 

F2(X) = {x, y, z, ε} 

F2(Y) = {x, y, z, ε} 

F2(Z) = {x, y, z, ε} 

F2(U) = {u} 

 

From this point on Fi(S) = F2(S) for i ≥ 3, S = X, Y, Z, 

U. It converges here. Therefore: 

FIRST2(X) = F2(X) = {x, y, z, ε} 

FIRST2(Y) = F2(Y) = {x, y, z, ε} 

FIRST2(Z) = F2(Z) = {x, y, z, ε} 

FIRST2(U) = F2(U) = {u} 

 

Note that here FIRST2(X) contains strings of length less 

than 2, because we need to keep them in the intermediate 

steps, as discussed at the end of section 2.4. 

Finally, we can calculate FIRSTk(α) = FIRST2(XYZU) 

= FIRST2(X)⊕ 2FIRST2(Y)⊕ 2 FIRST2(Z)⊕ 2 FIRST2(U)  

= {x, y, z, ε}⊕ 2{x, y, z, ε}⊕ 2{x, y, z, ε}⊕ 2{u} 

= {xx, xy, xz, xu, yx, yy, yz, yu, zx, zy, zz, zu, u} 

As a last step as discussed at the end of section 1.3.3, we 

remove strings whose length are less than 2, which is ‘u’ 

here, and obtain {xx, xy, xz, xu, yx, yy, yz, yu, zx, zy, zz, 

zu}. This is the same result as using our algorithm. 

4. Performance Study 

We implemented both the THEADk(α) algorithm and the 

FIRSTk(α) algorithm, and compared their performance. In 

each experiment, the start time and end time are measured 

multiple times, and then average start time is subtracted 

from average end time to obtain the running time. The 

study was conducted on a Sun Microsystems sun4u Netra 

440 server running Solaris. CPU is 1.6GHz, memory is 12 

GB. For all the experiments below, test case 2 uses the 

most memory (hundreds of MB), so memory is not an is-

sue. In the figure legends, THEAD represents THEADk(α), 

and FIRST represents FIRSTk(α).  

Grammar G2 is used as the testing grammar. 

4.1 Test case 1: α = UUUUUUUUUU, k = 1 to 10 

Result is shown in Table 3 and Figure 2. When α = 

UUUUUUUUUU, there is only one terminal head, which is 

u
k 

for k = 1 to 10. The speed is very fast, at the level of 

microsecond. The relatively long delay when k = 1 for the 

FIRSTk(α) algorithm should be caused by the initial con-

struction of the Fi(X) table. 

 

Table 3. Number of generated k-theads and time spent on 

input string UUUUUUUUUU, for k = 1 to 10 

k # of  

k-theads 

Time (sec) 

By HEAD 

Time (sec) 

By FIRST 

1 1 0.000022 0.000108 

2 1 0.000009 0.000014 

3 1 0.000012 0.00002 

4 1 0.000018 0.000017 

5 1 0.00002 0.00002 

6 1 0.000027 0.000026 

7 1 0.000032 0.000021 

8 1 0.000072 0.000022 

9 1 0.000047 0.000026 

10 1 0.000053 0.000055 

 

 
Figure 2. Time cost of THEADk(α) versus FIRSTk(α)  

for α = UUUUUUUUUU, k = 1 to 10 



4.2 Test case 2: α = XXXXXXXXXX, k = 1 to 8 

Result is shown in Table 4 and Figure 3. This is the worst 

case scenario where the theoretical bound of exponential 

behavior is observed. This is because each symbol of the 

input string is a non-terminal (X), which can derive 3 ter-

minals x, y and z. The number of k-theads that can be gen-

erated is 3
k
. When k is as small as 10, this will take hours to 

finish. The result is similar when α = YYYYYYYYYY or 

α = ZZZZZZZZZZ. 

 

Table 4. Number of generated k-theads and time spent on 

input string XXXXXXXXXX, for k = 1 to 8 

k # of 

k-theads 

Time (sec) 

By THEAD 

Time (sec) 

By FIRST 

1 3 0.000242 0.000221 

2 9 0.001302 0.00145 

3 27 0.00599 0.009041 

4 81 0.032146 0.065045 

5 243 0.213318 0.425997 

6 729 1.463382 3.282263 

7 2187 12.21782 26.23495 

8 6561 135.462 297.5679 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Time cost of THEADk(α) versus FIRSTk(α)  

for α = XXXXXXXXXX, k = 1 to 8. 

4.3 Test case 3: α = XYZUXYZUYX, k = 1 to 9 

Result is shown in Table 5 and Figure 4. Here α is a ran-

domly generated string. We can see that THEADk(α) per-

forms better than FIRSTk(α) for k = 1 to 9, but for k = 10, 

FIRSTk(α) runs faster. This possibly has to do with the way 

of implementation: in the implementation of FIRSTk(α), an 

ordered list is used to store the strings generated intermedi-

ately; for THEADk(α), the list used cannot be ordered, 

since new inserted strings will need to be processed and 

have to be attached to the end. When inserting a new gen-

erated string to the end of list L, THEADk(α) will search 

through the entire list to make sure it does not exist yet. To 

overcome this issue an auxiliary ordered list is used in the 

implementation. This slows it down when the list is long. 

Of course, better implementation using more efficient data 

structure can improve this scenario. 

 

Table 5. Number of generated k-theads and time spent on 

input string XYZUXYZUYX, for k = 1 to 10 

k # of 

k-theads 

Time (sec) 

By THEAD 

Time (sec) 

By FIRST 

1 4 0.000079 0.000315 

2 16 0.00038 0.001807 

3 63 0.002083 0.016498 

4 162 0.011877 0.063377 

5 486 0.100032 0.460147 

6 1296 0.624867 2.756787 

7 2916 3.3104 11.8662 

8 4374 14.64284 26.12881 

9 6561 62.89018 71.2255 

10 6561 94.49193 81.37379 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Time cost of THEADk(α) versus FIRSTk(α)  

for α = XYZUXYZUYX, k = 1 to 10. 

4.4 Test case 4: Average on 100 strings of length 10, k 

= 1 to 8 

100 input strings, each of length 10, are generated from the 

alphabet of {X, Y, Z, U} using a random number generator, 

and then fed to the algorithms to compare their perfor-

mance. This means the input strings may be like: 

 

1   YXXXYUUUUU 

2   UZZUUUZXXY 

3   YZZUYZZYZU 

4   ZZUZUZYUZY 

  … 

100 UUYXXUUXUY 

 

 



Result is shown in Table 6 and Figure 5. Table 4 shows 

the average number of k-theads generated and average time 

used by the THEADk(α) and FIRSTk(α) algorithms over 

100 input strings of length 10, and k = 1 to 8. Figure 4 

shows the graphical version of the average time used when 

k increases. It can be seen that the THEADk(α) algorithm 

uses less time. 

 

Table 6. Average number of generated k-theads and time 

spent on 100 random strings of length 10, for k = 1 to 8 

k Avg # of 

k-theads 

Time (sec) 

By THEAD 

Time (sec) 

By FIRST 

1 3.07 0.000068 0.000177 

2 10.37 0.000381 0.000969 

3 32.73 0.001999 0.006003 

4 95.43 0.011761 0.03663 

5 270.25 0.078635 0.246849 

6 697.89 0.505454 1.496519 

7 1662.39 3.484229 8.207717 

8 3669.3 27.723004 55.275918 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Time cost of THEADk(α) versus FIRSTk(α) 

when k increases. Averaged over 100 strings of length 10 

4.5 Test case 5: 100 strings of length 1 to 100, k = 2 

In this test case, k is fixed, while the input string is a k-

prefix of the following randomly generated string, where 

input string length |α| = 1 to 100, i.e., the input strings may 

be like: 

 

1   Y 

2   YZ 

3   YZZ 

4   YZZY 

  … 

100 YZZYYXZYYXYZUXYYUYXZUYYUZXUYZZYYZXX 

    XXXUUUYXYZZYZYZUUXZXZYZXXUZUXYZYYYU 

    YZZZZZUZXZYYYYZYYUXZZUYZUZXUY 

Result is shown in Figure 6. The time used by 

THEADk(α) does not increase with k, but it does increase 

with FIRSTk(α) (and the increase is linear visually from the 

graph). This is easy to explain. THEADk(α) throws away 

the substring after the second symbol that does not vanish, 

so each time it starts with the prefix “YZ” of the input 

string. In comparison, FIRSTk(α) needs to do the ⊕ k oper-

ation on every symbol of the input string, and n-1 ⊕ k 

operations are applied for an input string of n symbols. To 

overcome this issue, FIRSTk(α) needs to use a pre-

processing the same as line 3 of Algorithm 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Time cost of THEADk(α) versus FIRSTk(α) 

when k = 2, and string length |α| increases 

4.6 Summary 

We can draw several conclusions from the experiments. 

First of all, when the input string contains terminal sym-

bols only, the speed is the fastest. When the input string 

contains non-terminal symbols only, the speed is the slow-

est, and may lead to the worst case scenario: exponential 

increase in computation time. For a grammar as simple as 

G2, when k = 10, it will take hours to finish using both 

algorithms. 

In general the THEADk(α) algorithm performs better 

than the FIRSTk(α) algorithm, as shown by test case 4, 

which is averaged over 100 randomly generated strings of 

length 10 for k = 1 to 10. 

However, it is also possible that FIRSTk(α) runs faster 

than THEADk(α), as shown in test case 3  when k = 10. 

Finally, when k is small, but input string is long, 

THEADk(α) will perform better than FIRSTk(α), as shown 

by test case 5. Actually, for this scenario, the time 

THEADk(α) takes will not increase when the size of the 

input string increase. However, the time used by FIRSTk(α) 

will increase linearly according to the length of the input 

string. 



5. Implementation 

We briefly discuss the implementation of the two ap-

proaches here, which is done in ANSI C from scratch. 

To make the comparison of the two algorithms reasona-

ble, it is necessary to implement them with similar data 

structures.  

The major operations involved in both algorithms are set 

operations. In the current implementation, a set is imple-

mented as a linked list. Search in the set is done by going 

through the list in linear order. That a linked list is chosen 

for the implementation is because of the nature of the 

THEADk(α) algorithm: a new generated string has to be 

appended to the end of the current set, which makes queue 

a natural and necessary choice. A queue of unknown size as 

in the current scenario is in turn naturally implemented as a 

linked list.  

To guarantee similar search experience for both algo-

rithms, an ordered list is used. For the method of Aho and 

Ullman, this is no problem. But for the THEADk(α) meth-

od, the queue (implemented as a list) to be appended to can 

not be ordered, so an auxiliary list is provided which stores 

the same strings as the queue but is in sorted order, such 

that when a search in the auxiliary ordered list does not 

return a hit, the new string is appended to the end of the 

queue. The maintenance of two lists in the THEADk(α) 

algorithm implementation obviously will slow it down to 

some degree. 

This implementation can be improved by providing an 

auxiliary binary search tree or a hash table to both methods, 

which works much more efficient when decide if a string 

exists in a set. This improvement should be of more signifi-

cance to the performance of the THEADk(α) algorithm 

implementation according to the above discussion.  

Finally, a linked list suffices for all the operations of the 

THEADk(α) algorithm. For the algorithm of Aho and 

Ullman, an array is also used to store the pre-computed 

FIRSTk(Xi) values of all the symbols Xi, such that given a 

random string α = X1X2…Xn, FIRSTk(Xi) can be retrieved 

in constant time using index of Xi in the symbol table for 

the calculation of FIRSTk(α) = FIRSTk(X1)⊕ k 

FIRSTk(X2)⊕ k …⊕ k FIRSTk(Xn). 

6. Application 

One application of the algorithm presented here is to be 

used in a LR(k) parser generation algorithm. 

Our study of the LR(k) algorithm shows that the calcula-

tion of LR(k) lookahead is one of the major steps involved. 

We designed and implemented the Edge-Pushing LR(k) 

algorithm, which depends on the THEADk(α) function to 

calculate k-lookahead. The Edge-Pushing algorithm is 

shown below in Figure 7, which is taken from a previous 

paper [11]. The THEADk(α) algorithm is used on line 13. 

The Edge-Pushing algorithm is implemented in the 

HYACC parser generator, which is available as an open 

source parser generator [12][13]. 

 

 Algorithm 2: Edge_Pushing(S) 

 INPUT: INADEQUATE STATE S 

OUTPUT: S WITH CONFLICT RESOLVED, IF S IS LR(K) 

1 

2 

3 

4 

5 

6 

 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

 

17 

18 

19 

20 

21 

22 

 

23 

24 

25 

26 

27 

28 

Set_C  Ø 

Set_C2  Ø  

k  1 

foreach final configuration T of S do 

T.z  0 

Let C be the head configuration of T, and X be the 

      context generated by C 

Add triplet (C, X, T) to set Set_C 

end foreach 

while Set_C ≠ Ø do 

k  k + 1 

foreach (C:A � α • B β, X, T) in Set_C do 

    k’  k - C.z 

    calculate ψ  theads(β, k’) 

    foreach context string x in ψ do 

        if x.length == k’ then 

            Insert (S, X, last symbol of string x, C, T) to 

                Set_C2 and add to LR(k) parsing table 

        else if x.length == k’ - 1 then 

            Σ  lane_tracing(C) 

            foreach configuration σ in Σ do 

                σ.z  C.z + k’ 

                Let m be the generated context symbol in σ 

                Insert(S, X, m, σ, T) to Set_C2 and add to 

                    LR(k) parsing table 

        end if 

   end foreach 

end foreach 

     Set_C  Set_C2 

 Set_C2  Ø 

end while 

 

Figure 7. The Edge-Pushing Algorithm where 

THEADk(α) is used 

7. Conclusion 

In this paper we have presented a new algorithm to calcu-

late the terminal heads of length k, which is called 

THEADk(α).  

We reviewed relevant literature, of which Aho and 

Ullman’s method is the only previously available 

standalone algorithm for this purpose.  

We showed the new algorithm, discussed its correctness 

and complexity, and compared to previous work. Examples 

are given to evaluate terminal heads of length k of a given 



string by using the THEADk(α) algorithm and the 

FIRSTk(α) method of Aho and Ullman.  

An empirical study was conducted to compare the 

THEADk(α)  algorithm and the FIRSTk(α) algorithm. In 

general, when averaged over a large number of randomly 

generated input strings, THEADk(α) performs faster than 

FIRSTk(α). When the input string α is long but k is small, 

THEADk(α) always performs better than FIRSTk(α). 

Finally, we discussed the application of the new 

THEADk(α) algorithm, and pointed out that it has been 

used to implement the edge-pushing algorithm in the HY-

ACC parser generator. 

Due to the fact that FIRSTk(α) is a fundamental algo-

rithm that works as a basic building block in compiler theo-

ry and practice, its improvement should have wide impact. 
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